Raja Hafiz Affandi, Alex Kulesza, Emily B Fox, and Ben Taskar. Nyström Approximation for Large-Scale Determinantal Processes. In International Conference on Artificial Intelligence and Statistics (AISTATS), volume 31, 85–98. 2013. URL:


Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel ridge regression with statistical guarantees. In Proceedings of the 28th International Conference on Neural Information Processing Systems, 775–783. Montreal, Canada, December 2015.


David J Aldous. The Random Walk Construction of Uniform Spanning Trees and Uniform Labelled Trees. SIAM Journal on Discrete Mathematics, 3(4):450–465, nov 1990. URL:, doi:10.1137/0403039.


Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes. In Conference on Learning Theory (COLT), 103–115. New York, USA, 2016. PMLR. URL:, arXiv:1602.05242.


Luca Avena and Alexandre Gaudillière. On some random forests with determinantal roots. e-prints, 2013. URL:{\&}rep=rep1{\&}type=pdf.


Adrian Baddeley and Rolf Turner. spatstat : An R Package for Analyzing Spatial Point Patterns. Journal of Statistical Software, 12(6):1–42, jan 2005. URL:, doi:10.18637/jss.v012.i06.


Rémi Bardenet and Adrien Hardy. Monte Carlo with Determinantal Point Processes. ArXiv e-prints, 2016. URL:, arXiv:1605.00361.


Alexei Borodin. Determinantal point processes. ArXiv e-prints, 2009. URL:, arXiv:0911.1153.


Alexei Borodin, Persi Diaconis, and Jason Fulman. On adding a list of numbers (and other one-dependent determinantal processes). Bulletin of the American Mathematical Society, 47(4):639–670, 2010. URL:, arXiv:0904.3740.


David Burt, Carl Edward Rasmussen, and Mark Van Der Wilk. Rates of Convergence for Sparse Variational Gaussian Process Regression. In International Conference on Machine Learning (ICML), 862–871. may 2019. URL:, arXiv:1903.03571.


Daniele Calandriello, Michal Dereziński, and Michal Valko. Sampling from a k-DPP without looking at all items. In Advances in Neural Information Processing Systems. 2020.


Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Distributed adaptive sampling for kernel matrix approximation. In Artificial Intelligence and Statistics, 1421–1429. 2017.


Daryl J. Daley and David Vere-Jones. An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. Probability and its Applications. Springer-Verlag New York, New York, USA, 2 edition, 2003. ISBN 0-387-95541-0. URL:, doi:10.1007/b97277.


Laurent Decreusefond, Ian Flint, and Kah Choon Low. Perfect Simulation of Determinantal Point Processes. ArXiv e-prints, 2013. URL:, arXiv:1311.1027.


Michal Derezinski, Manfred K Warmuth, and Daniel J Hsu. Leveraged volume sampling for linear regression. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 2505–2514. Curran Associates, Inc., 2018. URL:


Michał Dereziński. Fast determinantal point processes via distortion-free intermediate sampling. In Alina Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, 1029–1049. Phoenix, USA, 25–28 Jun 2019. PMLR. URL:


Michal Dereziński, Daniele Calandriello, and Michal Valko. Exact sampling of determinantal point processes with sublinear time preprocessing. In Advances in Neural Information Processing Systems. 2019.


Alexander Dubbs and Alan Edelman. Infinite Random Matrix Theory, Tridiagonal Bordered Toeplitz Matrices, and the Moment Problem. Linear Algebra and its Applications, 467:188–201, 2015. arXiv:1502.04931, doi:10.1016/j.laa.2014.11.006.


Ioana Dumitriu and Alan Edelman. Matrix Models for Beta Ensembles. Journal of Mathematical Physics, 43(11):5830–5847, 2002. URL:{~}dumitriu/JMathPhys{\_}43{\_}5830.pdf, arXiv:0206043, doi:10.1063/1.1507823.


Christophe Dupuy and Francis Bach. Learning Determinantal Point Processes in Sublinear Time. In International Conference on Artificial Intelligence and Statistics (AISTATS), volume 84, 244–257. Lanzarote, Spain, 2018. PMLR. URL:, arXiv:1610.05925.


Mike Gartrell, Victor-Emmanuel Brunel, Elvis Dohmatob, and Syrine Krichene. Learning Nonsymmetric Determinantal Point Processes. ArXiv e-prints, may 2019. URL:, arXiv:1905.12962.


Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. Low-Rank Factorization of Determinantal Point Processes for Recommendation. In AAAI Conference on Artificial Intelligence, 1912–1918. 2016. URL:, arXiv:1602.05436.


Guillaume Gautier, Rémi Bardenet, and Michal Valko. Zonotope hit-and-run for efficient sampling from projection DPPs. International Conference on Machine Learning (ICML), pages 1223–1232, may 2017. URL:, arXiv:1705.10498.


Guillaume Gautier, Rémi Bardenet, and Michal Valko. On two ways to use determinantal point processes for Monte Carlo integration. In Neural Information Processing Systems (NeurIPS). 2019. URL:.


Guillaume Gautier, Guillermo Polito, Rémi Bardenet, and Michal Valko. DPPy: DPP Sampling with Python. Journal of Machine Learning Research - Machine Learning Open Source Software (JMLR-MLOSS), in press, 2019.


Walter Gautschi. How sharp is Bernstein’s Inequality for Jacobi polynomials? Electronic Transactions on Numerical Analysis, 36:1–8, 2009. URL:


Jennifer Gillenwater. Approximate inference for determinantal point processes. PhD thesis, University of Pennsylvania, 2014. URL:


J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág. Determinantal Processes and Independence. In Probability Surveys, volume 3, 206–229. The Institute of Mathematical Statistics and the Bernoulli Society, 2006. URL:, arXiv:0503110, doi:10.1214/154957806000000078.


Kurt Johansson. Random matrices and determinantal processes. Les Houches Summer School Proceedings, 83(C):1–56, 2006. arXiv:0510038, doi:10.1016/S0924-8099(06)80038-7.


Mohamed Slim Kammoun. Monotonous subsequences and the descent process of invariant random permutations. Electronic Journal of Probability, 2018. URL:, arXiv:1805.05253, doi:10.1214/18-EJP244.


Tarun Kathuria, Amit Deshpande, and Pushmeet Kohli. Batched Gaussian Process Bandit Optimization via Determinantal Point Processes. In Neural Information Processing Systems (NIPS), 4206–4214. 2016. URL:, arXiv:1611.04088.


Sergei Kerov. A Differential Model Of Growth Of Young Diagrams. Proceedings of St.Petersburg Mathematical Society, 1996. URL:


Rowan Killip and Irina Nenciu. Matrix models for circular ensembles. International Mathematics Research Notices, 2004(50):2665, 2004. URL:, arXiv:0410034, doi:10.1155/S1073792804141597.


Alex Kulesza and Ben Taskar. Determinantal Point Processes for Machine Learning. Foundations and Trends in Machine Learning, 5(2-3):123–286, 2012. URL:, arXiv:1207.6083, doi:10.1561/2200000044.


Wolfgang König. Orthogonal polynomial ensembles in probability theory. Probab. Surveys, 2:385–447, 2004. URL:, arXiv:0403090, doi:10.1214/154957805100000177.


Claire Launay, Bruno Galerne, and Agnès Desolneux. Exact Sampling of Determinantal Point Processes without Eigendecomposition. ArXiv e-prints, feb 2018. URL:, arXiv:1802.08429.


Frédéric Lavancier, Jesper Møller, and Ege Rubak. Determinantal point process models and statistical inference : Extended version. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 77(4):853–877, may 2012. URL:, arXiv:1205.4818, doi:10.1111/rssb.12096.


Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Efficient Sampling for k-Determinantal Point Processes. In International Conference on Artificial Intelligence and Statistics (AISTATS), 1328–1337. Cadiz, Spain, 2016. URL:, arXiv:1509.01618.


Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast DPP Sampling for Nyström with Application to Kernel Methods. In International Conference on Machine Learning (ICML), 2061–2070. New York, USA, 2016. URL:, arXiv:1603.06052.


Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling. In Neural Information Processing Systems (NIPS), 4188–4196. Barcelona, Spain, 2016. URL:, arXiv:1608.01008.


Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast Sampling for Strongly Rayleigh Measures with Application to Determinantal Point Processes. ArXiv e-prints, 2016. URL:, arXiv:1607.03559.


Russell Lyons. Determinantal probability measures. Publications mathématiques de l’IHÉS, 98(1):167–212, apr 2002. URL:, arXiv:0204325, doi:10.1007/s10240-003-0016-0.


Odile Macchi. The coincidence approach to stochastic point processes. Advances in Applied Probability, 7(01):83–122, 1975. URL:{\_}article, doi:10.2307/1425855.


Adrien Mazoyer, Jean-François Coeurjolly, and Pierre-Olivier Amblard. Projections of determinantal point processes. ArXiv e-prints, 2019. URL:, arXiv:1901.02099v3.


Francesco Mezzadri. How to generate random matrices from the classical compact groups. Notices of the American Mathematical Society, 54:592–604, sep 2006. URL:, arXiv:0609050.


Jesper. Møller and Rasmus Plenge. Waagepetersen. Statistical inference and simulation for spatial point processes. Volume 23. Chapman & Hall/CRC, 2004. ISBN 1584882654. URL:, doi:10.1201/9780203496930.


Raj K. Pathria and Paul D. Beale. Statistical Mechanics. Academic Press, 2011. ISBN 0123821894. URL:, doi:10.1016/B978-0-12-382188-1.00020-7.


Jack Poulson. High-performance sampling of generic Determinantal Point Processes. ArXiv e-prints, apr 2019. URL:, arXiv:1905.00165.


James Gary Propp and David Bruce Wilson. How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph. Journal of Algorithms, 27(2):170–217, may 1998. URL:, doi:10.1006/JAGM.1997.0917.


Carl Edward. Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning. MIT Press, 2006. ISBN 026218253X. URL:


Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and Lorenzo Rosasco. On fast leverage score sampling and optimal learning. In Advances in Neural Information Processing Systems 31, pages 5672–5682. 2018.


Alexander Soshnikov. Determinantal random point fields. Russian Mathematical Surveys, 55(5):923–975, feb 2000. URL:, arXiv:0002099, doi:10.1070/RM2000v055n05ABEH000321.


Nicolas Tremblay, Pierre-Olivier Amblard, and Simon Barthelme. Graph sampling with determinantal processes. In European Signal Processing Conference (EUSIPCO), 1674–1678. IEEE, aug 2017. URL:, arXiv:1703.01594, doi:10.23919/EUSIPCO.2017.8081494.


Nicolas Tremblay, Simon Barthelme, and Pierre-Olivier Amblard. Optimized Algorithms to Sample Determinantal Point Processes. ArXiv e-prints, feb 2018. URL:, arXiv:1802.08471.


Eugene P. Wigner. Random Matrices in Physics. SIAM Review, 9(1):1–23, 1967. doi:10.1137/1009001.