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Determinantal point processes (DPPs) are specific probability distributions over clouds of points, which have been
popular as models or computational tools across physics, probability, statistics, random matrices, and more recently
machine learning. DPPs are often used to induce diversity or repulsiveness among the points of a sample.

Sampling from DPPs is more tractable than sampling generic point processes with interaction, but it remains a
nontrivial matter and a research area of its own.

As a contraction of DPPs and Python, DPPy is an effort to gather:

• exact and approximate samplers for finite DPPs

• random matrix models (full and banded) for 𝛽-Ensembles

• Multivariate Jacobi ensemble used for Monte Carlo integration

• exact samplers for more Exotic DPPs
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– uniform spanning trees

– descent processes

– the Poissonized Plancherel

The purpose of this documentation is to both provide a quick survey of DPPs and relate each mathematical
property with its implementation in DPPy. The documentation can thus be read in different ways:

• if you read the sections in the order they appear, they will first take you through mathematical definitions and
quick illustrations of how these definitions are encoded in DPPy.

• for more a traditional library documentation please refer to the corresponding API sections documenting the
methods of each object, along with pointers to the mathematical definitions if needed.

• you can also directly jump to the Jupyter notebooks, which showcase the use of some DPPy objects in more
detail.
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2D Multivariate Jacobi ensemble 𝛽 = 2-Laguerre ensemble

K kernel of Uniform Spanning Tree Graph associated to K
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CHAPTER

ONE

INSTALLATION INSTRUCTIONS

See the installation instructions on GitHub.
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CHAPTER

TWO

HOW TO CITE THIS WORK?

We wrote a companion paper to DPPy which got accepted for publication in the MLOSS track of JMLR, see
[GPBV19].

If you use this package, please consider citing it with this piece of BibTeX:

@article{GPBV19,
author = {Gautier, Guillaume and Polito, Guillermo and Bardenet, R{\'{e}}mi and

→˓Valko, Michal},
journal = {Journal of Machine Learning Research - Machine Learning Open Source

→˓Software (JMLR-MLOSS)},
title = {{DPPy: DPP Sampling with Python}},
keywords = {Computer Science - Machine Learning, Computer Science - Mathematical

→˓Software, Statistics - Machine Learning},
url = {http://jmlr.org/papers/v20/19-179.html},
year = {2019},
archivePrefix = {arXiv},
arxivId = {1809.07258},
note = {Code at http://github.com/guilgautier/DPPy/ Documentation at http://dppy.

→˓readthedocs.io/}
}
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CHAPTER

THREE

DOCUMENTATION CONTENTS

3.1 Finite DPPs

3.1.1 Definition

A finite point process 𝒳 on [𝑁 ] , {1, . . . , 𝑁} can be understood as a random subset. It is defined either via its:

• inclusion probabilities (also called correlation functions)

P[𝑆 ⊂ 𝒳 ], for 𝑆 ⊂ [𝑁 ],

• likelihood

P[𝒳 = 𝑆], for 𝑆 ⊂ [𝑁 ].

Hint: The determinantal feature of DPPs stems from the fact that such inclusion, resp. marginal probabilities are
given by the principal minors of the corresponding correlation kernel K (resp. likelihood kernel L).

Inclusion probabilities

We say that 𝒳 ∼ DPP(K) with correlation kernel a complex matrix K if

P[𝑆 ⊂ 𝒳 ] = detK𝑆 , ∀𝑆 ⊂ [𝑁 ], (3.1)

where K𝑆 = [K𝑖𝑗 ]𝑖,𝑗∈𝑆 i.e. the square submatrix of K obtained by keeping only rows and columns indexed by 𝑆.
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Likelihood

We say that 𝒳 ∼ DPP(L) with likelihood kernel a complex matrix L if

P[𝒳 = 𝑆] =
detL𝑆

det[𝐼 + L]
, ∀𝑆 ⊂ [𝑁 ]. (3.2)

Existence

Some common sufficient conditions to guarantee existence are:

K = K† and 0𝑁 ⪯ K ⪯ 𝐼𝑁 , (3.3)

L = L† and L ⪰ 0𝑁 , (3.4)

where the dagger † symbol means conjugate transpose.

Note: In the following, unless otherwise specified:

• we work under the sufficient conditions (3.3) and (3.3),

• (𝜆1, . . . , 𝜆𝑁 ) denote the eigenvalues of K,

• (𝛾1, . . . , 𝛾𝑁 ) denote the eigenvalues of L.

# from numpy import sqrt
from numpy.random import rand, randn
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

r, N = 4, 10
e_vecs, _ = qr(randn(N, r), mode='economic')

# Inclusion K
e_vals_K = rand(r) # in [0, 1]
dpp_K = FiniteDPP('correlation', **{'K_eig_dec': (e_vals_K, e_vecs)})
# or
# K = (e_vecs * e_vals_K).dot(e_vecs.T)
# dpp_K = FiniteDPP('correlation', **{'K': K})
dpp_K.plot_kernel()

# Marginal L
e_vals_L = e_vals_K / (1.0 - e_vals_K)
dpp_L = FiniteDPP('likelihood', **{'L_eig_dec': (e_vals_L, e_vecs)})
# or
# L = (e_vecs * e_vals_L).dot(e_vecs.T)
# dpp_L = FiniteDPP('likelihood', **{'L': K})
# Phi = (e_vecs * sqrt(e_vals_L)).T
# dpp_L = FiniteDPP('likelihood', **{'L_gram_factor': Phi}) # L = Phi.T Phi
dpp_L.plot_kernel()

3.1. Finite DPPs 7
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Projection DPPs

Important: DPP(K) defined by an orthogonal projection correlation kernel K are called projection DPPs.

Recall that orthogonal projection matrices are notably characterized by

a. K2 = K and K† = K,

b. or equivalently by K = 𝑈𝑈† with 𝑈†𝑈 = 𝐼𝑟 where 𝑟 = rank(K).

They are indeed valid kernels since they meet the above sufficient conditions: they are Hermitian with eigenvalues 0
or 1.

from numpy import ones
from numpy.random import randn
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

r, N = 4, 10

eig_vals = ones(r)
A = randn(r, N)
eig_vecs, _ = qr(A.T, mode='economic')

proj_DPP = FiniteDPP('correlation', projection=True,

**{'K_eig_dec': (eig_vals, eig_vecs)})
# or
# proj_DPP = FiniteDPP('correlation', projection=True, **{'A_zono': A})
# K = eig_vecs.dot(eig_vecs.T)
# proj_DPP = FiniteDPP('correlation', projection=True, **{'K': K})

k-DPPs

A 𝑘-DPP can be defined as DPP(L) (3.2) conditioned to a fixed sample size |𝒳 | = 𝑘, we denote it 𝑘-DPP(L).

It is naturally defined through its joint probabilities

P𝑘-DPP[𝒳 = 𝑆] =
1

𝑒𝑘(𝐿)
detL𝑆1|𝑆|=𝑘, (3.5)

where the normalizing constant 𝑒𝑘(𝐿) corresponds to the elementary symmetric polynomial of order 𝑘 evaluated in
the eigenvalues of L,

𝑒𝑘(L) , 𝑒𝑘(𝛾1, . . . , 𝛾𝑁 ) =
∑︁

𝑆⊂[𝑁 ]
|𝑆|=𝑘

∏︁
𝑠∈𝑆

𝛾𝑠 =
∑︁

𝑆⊂[𝑁 ]
|𝑆|=𝑘

det𝐿𝑆 .

Note: Obviously, one must take 𝑘 ≤ rank(𝐿) otherwise detL𝑆 = 0 for |𝑆| = 𝑘 > rank(𝐿).

Warning: k-DPPs are not DPPs in general. Viewed as a DPP conditioned to a fixed sample size |𝒳 | = 𝑘, the
only case where they coincide is when the original DPP is a projection DPP(K), and 𝑘 = rank(K), see (3.13).

See also:

3.1. Finite DPPs 10
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• Exact sampling of k-DPPs

• FiniteDPP

• [KT12] Section 2 for DPPs

• [KT12] Section 5 for 𝑘-DPPs

3.1.2 Properties

Throughout this section, we assume K and L satisfy the sufficient conditions (3.3) and (3.4) respectively.

Relation between correlation and likelihood kernels

1. Considering the DPP defined by L ⪰ 0𝑁 , the associated correlation kernel K (3.1) can be derived as

K = L(𝐼 + L)¯1 = 𝐼 − (𝐼 + L)¯1. (3.6)

See also:

Theorem 2.2 [KT12].

2. Considering the DPP defined by 0𝑁 ⪯ K ≺ 𝐼𝑁 , the associated likelihood kernel L (3.2) can be derived as

L = K(𝐼 −K)¯1 = −𝐼 + (𝐼 −K)¯1. (3.7)

See also:

Equation 25 [KT12].

Important: Thus, except for correlation kernels K with some eigenvalues equal to 1, both K and L are diagonalizable
in the same basis

K = 𝑈Λ𝑈†, L = 𝑈Γ𝑈† with 𝜆𝑛 =
𝛾𝑛

1 + 𝛾𝑛
. (3.8)

Note: For DPPs with projection correlation kernel K, the likelihood kernel L cannot be computed via (3.7), since K
has at least one eigenvalue equal to 1 (K2 = K).

Nevertheless, if you recall that the number of points of a projection DPP, then its likelihood reads

P[𝒳 = 𝑆] = detK𝑆1|𝑆|=rank(K) ∀𝑆 ⊂ [𝑁 ].

from numpy.random import randn, rand
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

r, N = 4, 10

(continues on next page)
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(continued from previous page)

eig_vals = rand(r) # 0< <1
eig_vecs, _ = qr(randn(N, r), mode='economic')

DPP = FiniteDPP('correlation', **{'K_eig_dec': (eig_vals, eig_vecs)})
DPP.compute_L()

# - L (likelihood) kernel computed via:
# - eig_L = eig_K/(1-eig_K)
# - U diag(eig_L) U.T

See also:

• compute_K()

• compute_L()

Generic DPPs as mixtures of projection DPPs

Projection DPPs are the building blocks of the model in the sense that generic DPPs are mixtures of projection DPPs.

Important: Consider 𝒳 ∼ DPP(K) and write the spectral decomposition of the corresponding kernel as

K =

𝑁∑︁
𝑛=1

𝜆𝑛𝑢𝑛𝑢
†
𝑛.

Then, denote 𝒳𝐵 ∼ DPP(K𝐵) with

K𝐵 =

𝑁∑︁
𝑛=1

𝐵𝑛𝑢𝑛𝑢
†
𝑛, where 𝐵𝑛

i.i.d.∼ ℬ𝑒𝑟(𝜆𝑛),

where 𝒳𝐵 is obtained by first choosing 𝐵1, . . . , 𝐵𝑁 independently and then sampling from DPP(K𝐵) the DPP with
orthogonal projection kernel K𝐵 .

Finally, we have 𝒳 𝑑
= 𝒳𝐵 .

See also:

• Theorem 7 in [HKPVirag06]

• Exact sampling

• Continuous case of Generic DPPs as mixtures of projection DPPs

Number of points

For projection DPPs, i.e., when K is an orthogonal projection matrix, one can show that |𝒳 | = rank(K) = Trace(K)
almost surely (see, e.g., Lemma 17 of [HKPVirag06] or Lemma 2.7 of [KT12]).

In the general case, based on the fact that generic DPPs are mixtures of projection DPPs, we have

|𝒳 | =

𝑁∑︁
𝑛=1

ℬer (𝜆𝑛) =

𝑁∑︁
𝑛=1

ℬer

(︂
𝛾𝑛

1 + 𝛾𝑛

)︂
. (3.9)

Note: From (3.9) it is clear that |𝒳 | ≤ rank(K) = rank(L).

3.1. Finite DPPs 12



Expectation

E[|𝒳 |] = traceK =

𝑁∑︁
𝑛=1

𝜆𝑛 =

𝑁∑︁
𝑛=1

𝛾𝑛
1 + 𝛾𝑛

. (3.10)

The expected size of a DPP with likelihood matrix L is also related to the effective dimension 𝑑eff(L) = trace(L(L+
I)−1) = traceK = E[|𝒳 |] of L, a quantity with many applications in randomized numerical linear algebra and
statistical learning theory (see e.g., [DerezinskiCV19]).

Variance

Var[|𝒳 |] = traceK− traceK2 =
𝑁∑︁

𝑛=1

𝜆𝑛(1 − 𝜆𝑛) =

𝑁∑︁
𝑛=1

𝛾𝑛
(1 + 𝛾𝑛)2

. (3.11)

See also:

Expectation and variance of Linear statistics.

import numpy as np
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

rng = np.random.RandomState(1)

r, N = 5, 10
eig_vals = rng.rand(r) # 0< <1
eig_vecs, _ = qr(rng.randn(N, r), mode='economic')

dpp_K = FiniteDPP('correlation', projection=False,

**{'K_eig_dec': (eig_vals, eig_vecs)})

nb_samples = 2000
for _ in range(nb_samples):

dpp_K.sample_exact(random_state=rng)

sizes = list(map(len, dpp_K.list_of_samples))
print('E[|X|]:\n emp={:.3f}, theo={:.3f}'

.format(np.mean(sizes), np.sum(eig_vals)))
print('Var[|X|]:\n emp={:.3f}, theo={:.3f}'

.format(np.var(sizes), np.sum(eig_vals*(1-eig_vals))))

E[|X|]:
emp=1.581, theo=1.587

Var[|X|]:
emp=0.795, theo=0.781

3.1. Finite DPPs 13



Special cases

1. When the correlation kernel K (3.1) of DPP(K) is an orthogonal projection kernel, i.e., DPP(K) is a projection
DPP, we have

|𝒳 | = rank(K) = trace(K), almost surely. (3.12)

import numpy as np
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

r, N = 4, 10
eig_vals = np.ones(r)
eig_vecs, _ = qr(rng.randn(N, r), mode='economic')

DPP = FiniteDPP('correlation', projection=True,

**{'K_eig_dec': (eig_vals, eig_vecs)})

for _ in range(1000):
DPP.sample_exact()

sizes = list(map(len, DPP.list_of_samples))
# np.array(DPP.list_of_samples).shape = (1000, 4)

assert([np.mean(sizes), np.var(sizes)] == [r, 0])

Important: Since |𝒳 | = rank(K) points, almost surely, the likelihood of the projection DPP(K)
reads

P[𝒳 = 𝑆] = detK𝑆1|𝑆|=rankK. (3.13)

In other words, the projection DPP having for correlation kernel the orthogonal projection matrix K
coincides with the k-DPP having likelihood kernel K when 𝑘 = rank(K).

2. When the likelihood kernel L of DPP(L) (3.2) is an orthogonal projection kernel we have

|𝒳 | ∼ Binomial(rank(L), 1/2). (3.14)

import numpy as np
from scipy.stats import binom, chisquare
from scipy.linalg import qr
import matplotlib.pyplot as plt
from dppy.finite_dpps import FiniteDPP

r, N = 5, 10
e_vals = np.ones(r)
e_vecs, _ = qr(np.random.randn(N, r), mode='economic')

(continues on next page)
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(continued from previous page)

dpp_L = FiniteDPP('likelihood',
projection=True,

**{'L_eig_dec': (e_vals, e_vecs)})

nb_samples = 1000
dpp_L.flush_samples
for _ in range(nb_samples):

dpp_L.sample_exact()

sizes = list(map(len, dpp_L.list_of_samples))

p = 0.5 # binomial parameter
rv = binom(r, p)

fig, ax = plt.subplots(1, 1)

x = np.arange(0, r + 1)

pdf = rv.pmf(x)
ax.plot(x, pdf,

'ro', ms=8,
label=r'pdf $Bin({}, {})$'.format(r, p))

hist = np.histogram(sizes, bins=np.arange(0, r + 2), density=True)[0]
ax.vlines(x, 0, hist,

colors='b', lw=5, alpha=0.5,
label='hist of sizes')

ax.legend(loc='best', frameon=False)

plt.title('p_value = {:.3f}'.format(chisquare(hist, pdf)[1]))
plt.show()

Geometrical insights

Kernels satisfying the sufficient conditions (3.3) and (3.4) can be expressed as

K𝑖𝑗 = ⟨𝜑𝑖, 𝜑𝑗⟩ and L𝑖𝑗 = ⟨𝜓𝑖, 𝜓𝑗⟩,

where each item is represented by a feature vector 𝜑𝑖 (resp. 𝜓𝑖).

The geometrical view is then straightforward.

a. The inclusion probabilities read

P[𝑆 ⊂ 𝒳 ] = detK𝑆 = Vol2{𝜑𝑠}𝑠∈𝑆 .

b. The likelihood reads

P[𝒳 = 𝑆] ∝ detL𝑆 = Vol2{𝜓𝑠}𝑠∈𝑆 .

That is to say, DPPs favor subsets 𝑆 whose corresponding feature vectors span a large volume i.e. DPPs sample
softened orthogonal bases.

3.1. Finite DPPs 15
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See also:

Geometric interpretation of the chain rule for projection DPPs

Diversity

The determinantal structure of DPPs encodes the notion of diversity. Deriving the pair inclusion probability, also
called the 2-point correlation function using (3.1), we obtain

P[{𝑖, 𝑗} ⊂ 𝒳 ] =

⃒⃒⃒⃒
P[𝑖 ∈ 𝒳 ] K𝑖𝑗

K𝑖𝑗 P[𝑗 ∈ 𝒳 ]

⃒⃒⃒⃒
= P[𝑖 ∈ 𝒳 ]P[𝑗 ∈ 𝒳 ] − |K𝑖𝑗 |2,

so that, the larger |K𝑖𝑗 | less likely items 𝑖 and 𝑗 co-occur. If 𝐾𝑖𝑗 models the similarity between items 𝑖 and 𝑗, DPPs
are thus random diverse sets of elements.

Conditioning

Like many other statistics of DPPs, the conditional probabilities can be expressed my means of a determinant and
involve the correlation kernel K (3.1).

For any disjoint subsets 𝑆, 𝑇 ⊂ [𝑁 ], i.e., such that 𝑆 ∩ 𝑇 = ∅ we have

P[𝑇 ⊂ 𝒳 | 𝑆 ⊂ 𝒳 ] = det
[︀
K𝑇 −K𝑇𝑆K

−1
𝑆 K𝑆𝑇

]︀
, (3.15)

P[𝑇 ⊂ 𝒳 | 𝑆 ∩ 𝒳 = ∅] = det
[︀
K𝑇 −K𝑇𝑆(K𝑆 − 𝐼)−1K𝑆𝑇

]︀
. (3.16)

See also:

• Propositions 3 and 5 of [Pou19] for the proofs

• Equations (3.15) and (3.15) are key to derive the Cholesky-based exact sampler which makes use of the chain
rule on sets.

3.1.3 Exact sampling

Consider a finite DPP defined by its correlation kernel K (3.1) or likelihood kernel L (3.2). There exist three main
types of exact sampling procedures:

1. The spectral method (used by default) requires the eigendecomposition of the correlation kernel K or the like-
lihood kernel L. It is based on the fact that generic DPPs are mixtures of projection DPPs together with the
application of the chain rule to sample projection DPPs. It is presented in Section Spectral method.

2. A Cholesky-based procedure which requires the correlation kernel K (even non-Hermitian!). It boils down to
applying the chain rule on sets; where each item in turn is decided to be excluded or included in the sample. It
is presented in Section Cholesky-based method.

3. Recently, [DerezinskiCV19] have also proposed an alternative method to get exact samples: first sample an
intermediate distribution and correct the bias by thinning the intermediate sample using a carefully designed
DPP. This approach does not require a Cholesky/Eigen-decomposition of the DPP, but the runtime instead scale
with the expected sample size of the DPP (see Number of points). It is presented in Section Intermediate
sampling method. A more refined procedure based on this approach was introduced in [CDerezinskiV20] for
k-DPP sampling.
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In general, for small 𝑁 (i.e. less than 1000) spectral or cholesky samplers are recommended for numerical stability.
For larger 𝑁 (i.e. up to millions) and moderate 𝑘 (i.e. in the hundreds) intermediate sampling is recommended for
scalability.

The following table summarizes the complexity of all exact samplers currently available, where the expected sample
size E[|𝑋|] is equal to 𝑘 for k-DPPs and 𝑑eff for random-sized DPPs.

mode= Time to
first sam-
ple

Time to
subse-
quent
samples

Notes

DPP k-
DPP

DPP k-
DPP

Spec-
tral
sam-
pler

"GS",
"GS_bis",
"KuTa12"

𝑂(𝑁3)𝑂(𝑁3) 𝑂(𝑁𝑑2eff)𝑂(𝑁𝑘2)The three variants differ slightly, and depending on the DPP
they can have different numerical stability.

Cholesky
sam-
pler

"chol" 𝑂(𝑁3)𝑂(𝑁3) 𝑂(𝑁3)𝑂(𝑁3) Also works for non-Hermitian DPPs.

Intermediate
sam-
pler

"vfx" 𝑂(𝑁𝑑6eff)𝑂(𝑁𝑘10+
𝑘15)

𝑂(𝑑6eff) 𝑂(𝑘6) For "alpha" we report worst case runtime, but depending
on the DPP structure best case runtime can be much faster
than "vfx". For particularly ill-posed DPPs "vfx" can be
more numerically stable.

"alpha" 𝑂(𝑁𝑑5eff)𝑂(𝑁𝑘6/𝑑eff+
𝑘9)

𝑂(𝑑6eff) 𝑂(𝑘6)

Note:

• There exist specific samplers for special DPPs, like the ones presented in Section Exotic DPPs.

Important: In the next section, we describe the Algorithm 18 of [HKPVirag06], based on the chain rule, which was
originally designed to sample continuous projection DPPs. Obviously, it has found natural a application in the finite
setting for sampling projection DPP(K). However, we insist on the fact that this chain rule mechanism is specific
to orthogonal projection kernels. In particular, it cannot be applied blindly to sample general 𝑘-DPP(L) but it is
valid when L is an orthogonal projection kernel.

This crucial point is developed in the following Caution section.

Projection DPPs: the chain rule

In this section, we describe the generic projection DPP sampler, originally derived by [HKPVirag06] Algorithm 18.

Recall that the number of points of a projection 𝑟 = DPP(K) is, almost surely, equal to rank(𝐾), so that the likelihood
(3.13) of 𝑆 = {𝑠1, . . . , 𝑠𝑟} reads

P[𝒳 = 𝑆] = detK𝑆 .

Using the invariance by permutation of the determinant and the fact that K is an orthogonal projection matrix, it is
sufficient to apply the chain rule to sample (𝑠1, . . . , 𝑠𝑟) with joint distribution

P[(𝑠1, . . . , 𝑠𝑟)] =
1

𝑟!
P[𝒳 = {𝑠1, . . . , 𝑠𝑟}] =

1

𝑟!
detK𝑆 ,

and forget about the sequential feature of the chain rule to get a valid sample {𝑠1, . . . , 𝑠𝑟} ∼ DPP(K).
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Considering 𝑆 = {𝑠1, . . . , 𝑠𝑟} such that P[𝒳 = 𝑆] = detK𝑆 > 0, the following generic formulation of the chain rule

P[(𝑠1, . . . , 𝑠𝑟)] = P[𝑠1]

𝑟∏︁
𝑖=2

P[𝑠𝑖|𝑠1:𝑖−1],

can be expressed as a telescopic ratio of determinants

P[(𝑠1, . . . , 𝑠𝑟)] =
K𝑠1,𝑠1

𝑟

𝑟∏︁
𝑖=2

1

𝑟 − (𝑖− 1)

detK𝑆𝑖

detK𝑆𝑖−1

, (3.17)

where 𝑆𝑖−1 = {𝑠1, . . . , 𝑠𝑖−1}.

Using Woodbury’s formula the ratios of determinants in (3.17) can be expanded into

P[(𝑠1, . . . , 𝑠𝑟)] =
K𝑠1,𝑠1

𝑟

𝑟∏︁
𝑖=2

K𝑠𝑖,𝑠𝑖 −K𝑠𝑖,𝑆𝑖−1
K𝑆𝑖−1

−1K𝑆𝑖−1,𝑠𝑖

𝑟 − (𝑖− 1)
. (3.18)

Hint: MLers will recognize in (3.18) the incremental posterior variance of the Gaussian Process (GP) associated to
K, see [RW06] Equation 2.26.

Caution: The connexion between the chain rule (3.18) and Gaussian Processes is valid in the case where the GP
kernel is an orthogonal projection kernel, see also Caution.

See also:

• Algorithm 18 [HKPVirag06]

• Projection DPPs: the chain rule in the continuous case

Geometrical interpretation

Hint: Since K is an orthogonal projection matrix, the following Gram factorizations provide an insightful geomet-
rical interpretation of the chain rule mechanism (3.17):

1. Using K = K2 and K† = K, we have K = KK†, so that the chain rule (3.17) becomes

P[(𝑠1, . . . , 𝑠𝑟)] =
1

𝑟!
Volume2(K𝑠1,:, . . . ,K𝑠𝑟,:)

=
‖K𝑠1,:‖

2

𝑟

𝑟∏︁
𝑖=2

distance2(K𝑠𝑖,:,Span
{︀
K𝑠1,:, . . . ,K𝑠𝑖−1,:

}︀
𝑟 − (𝑖− 1)

.
(3.19)

2. Using the eigendecomposition, we can write K = 𝑈𝑈† where 𝑈†𝑈 = 𝐼𝑟, so that the chain rule (3.17) becomes

P[(𝑠1, . . . , 𝑠𝑟)] =
1

𝑟!
Volume2(𝑈𝑠1,:, . . . , 𝑈𝑠𝑟,:)

=
‖𝑈𝑠1,:‖

2

𝑟

𝑟∏︁
𝑖=2

distance2(𝑈𝑠𝑖,:,Span
{︀
𝑈𝑠1,:, . . . , 𝑈𝑠𝑖−1,:

}︀
𝑟 − (𝑖− 1)

.
(3.20)

In other words, the chain rule formulated as (3.19) and (3.20) is akin to do Gram-Schmidt orthogonalization of the
feature vectors K𝑖,: or U𝑖,:. These formulations can also be understood as an application of the base × height formula.
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In the end, projection DPPs favors sets of 𝑟 = rank(K) of items are associated to feature vectors that span large
volumes. This is another way of understanding diversity.

See also:

MCMC samplers

• zonotope sampling

• basis exchange

In practice

The cost of getting one sample from a projection DPP is of order 𝒪(𝑁 rank(K)2), whenever DPP(K) is defined
through

• K itself; sampling relies on formulations (3.19) or (3.18)

import numpy as np
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

seed = 0
rng = np.random.RandomState(seed)

r, N = 4, 10
eig_vals = np.ones(r) # For projection DPP
eig_vecs, _ = qr(rng.randn(N, r), mode='economic')

DPP = FiniteDPP(kernel_type='correlation',
projection=True,

**{'K': (eig_vecs * eig_vals).dot(eig_vecs.T)})

for mode in ('GS', 'Schur', 'Chol'): # default: GS

rng = np.random.RandomState(seed)
DPP.flush_samples()

for _ in range(10):
DPP.sample_exact(mode=mode, random_state=rng)

print(DPP.sampling_mode)
print(DPP.list_of_samples)

GS
[[5, 7, 2, 1], [4, 6, 2, 9], [9, 2, 6, 4], [5, 9, 0, 1], [0, 8, 6, 7], [9,
→˓ 6, 2, 7], [0, 6, 2, 9], [5, 2, 1, 8], [5, 4, 0, 8], [5, 6, 9, 1]]
Schur
[[5, 7, 2, 1], [4, 6, 2, 9], [9, 2, 6, 4], [5, 9, 0, 1], [0, 8, 6, 7], [9,
→˓ 6, 2, 7], [0, 6, 2, 9], [5, 2, 1, 8], [5, 4, 0, 8], [5, 6, 9, 1]]
Chol
[[5, 7, 6, 0], [4, 6, 5, 7], [9, 5, 0, 1], [5, 9, 2, 4], [0, 8, 1, 7], [9,
→˓ 0, 5, 1], [0, 6, 5, 9], [5, 0, 1, 9], [5, 0, 2, 8], [5, 6, 9, 1]]

See also:

– sample_exact()
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– [HKPVirag06] Theorem 7, Algorithm 18 and Proposition 19, for the original idea

– [Pou19] Algorithm 3, for the equivalent Cholesky-based perspective with cost of order
𝒪(𝑁 rank(K)2)

• its eigenvectors 𝑈 , i.e., K = 𝑈𝑈† with 𝑈†𝑈 = 𝐼rank(K); sampling relies on (3.20)

import numpy as np
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

seed = 0
rng = np.random.RandomState(seed)

r, N = 4, 10
eig_vals = np.ones(r) # For projection DPP
eig_vecs, _ = qr(rng.randn(N, r), mode='economic')

DPP = FiniteDPP(kernel_type='correlation',
projection=True,

**{'K_eig_dec': (eig_vals, eig_vecs)})

rng = np.random.RandomState(seed)

for _ in range(10):
# mode='GS': Gram-Schmidt (default)
DPP.sample_exact(mode='GS', random_state=rng)

print(DPP.list_of_samples)

[[5, 7, 2, 1], [4, 6, 2, 9], [9, 2, 6, 4], [5, 9, 0, 1], [0, 8, 6, 7], [9,
→˓ 6, 2, 7], [0, 6, 2, 9], [5, 2, 1, 8], [5, 4, 0, 8], [5, 6, 9, 1]]

See also:

– sample_exact()

– [HKPVirag06] Theorem 7, Algorithm 18 and Proposition 19, for the original idea

– [KT12] Algorithm 1, for a first interpretation of the spectral counterpart of [HKPVirag06] Algo-
rithm 18 running in 𝒪(𝑁 rank(K)3)

– [Gil14] Algorithm 2, for the 𝒪(𝑁 rank(K)2) implementation

– [TBA18] Algorithm 3, for a technical report on DPP sampling

Spectral method

Main idea

The procedure stems from Theorem 7 of [HKPVirag06], i.e., the fact that generic DPPs are mixtures of projection
DPPs, suggesting the following two steps algorithm. Given the spectral decomposition of the correlation kernel K

K = 𝑈Λ𝑈† =

𝑁∑︁
𝑛=1

𝜆𝑛𝑢𝑛𝑢
†
𝑛.

Step 1. Draw independent Bernoulli random variables 𝐵𝑛 ∼ ℬer(𝜆𝑛) for 𝑛 = 1, . . . , 𝑁 and collect ℬ =
{𝑛 ; 𝐵𝑛 = 1},
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Step 2. Sample from the projection DPP with correlation kernel 𝑈:ℬ𝑈:ℬ
† =

∑︀
𝑛∈ℬ 𝑢𝑛𝑢

†
𝑛, see the section above.

Note: Step 1. selects a component of the mixture while Step 2. requires sampling from the corresponding projection
DPP, cf. Projection DPPs: the chain rule

In practice

• Sampling projection DPP(K) from the eigendecomposition of K = 𝑈𝑈† with 𝑈†𝑈 = 𝐼rank(K)) was presented
in the section above

• Sampling DPP(K) from 0𝑁 ⪯ K ⪯ 𝐼𝑁 can be done by following

Step 0. compute the eigendecomposition of K = 𝑈Λ𝑈† in 𝒪(𝑁3).

Step 1. draw independent Bernoulli random variables 𝐵𝑛 ∼ ℬer(𝜆𝑛) for 𝑛 = 1, . . . , 𝑁 and collect
ℬ = {𝑛 ; 𝐵𝑛 = 1}

Step 2. sample from the projection DPP with correlation kernel defined by its eigenvectors 𝑈:,ℬ

Important: Step 0. must be performed once and for all in 𝒪(𝑁3). Then the average cost of getting
one sample by applying Steps 1. and 2. is 𝒪(𝑁E [|𝒳 |]2), where E [|𝒳 |] = trace(K) =

∑︀𝑁
𝑛=1 𝜆𝑛.

from numpy.random import RandomState
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

rng = RandomState(0)

r, N = 4, 10
eig_vals = rng.rand(r) # For projection DPP
eig_vecs, _ = qr(rng.randn(N, r), mode='economic')

DPP = FiniteDPP(kernel_type='correlation',
projection=False,

**{'K': (eig_vecs*eig_vals).dot(eig_vecs.
→˓T)})

for _ in range(10):
# mode='GS': Gram-Schmidt (default)
DPP.sample_exact(mode='GS', random_state=rng)

print(DPP.list_of_samples)

[[7, 0, 1, 4], [6], [0, 9], [0, 9], [8, 5], [9], [6, 5, 9], [9], [3, 0],
→˓[5, 1, 6]]

• Sampling DPP(L) from L ⪰ 0𝑁 can be done by following

Step 0. compute the eigendecomposition of L = 𝑉 Γ𝑉 † in 𝒪(𝑁3).

Step 1. is adapted to: draw independent Bernoulli random variables 𝐵𝑛 ∼ ℬer( 𝛾𝑛

1+𝛾𝑛
) for 𝑛 =

1, . . . , 𝑁 and collect ℬ = {𝑛 ; 𝐵𝑛 = 1}

Step 2. is adapted to: sample from the projection DPP with correlation kernel defined by its eigen-
vectors 𝑉:,ℬ.
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Important: Step 0. must be performed once and for all in 𝒪(𝑁3). Then the average cost of getting
one sample by applying Steps 1. and 2. is 𝒪(𝑁E [|𝒳 |]2), where E [|𝒳 |] = trace(L(I + L)−1) =∑︀𝑁

𝑛=1
𝛾𝑛

1+𝛾𝑛

from numpy.random import RandomState
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

rng = RandomState(0)

r, N = 4, 10
phi = rng.randn(r, N)

DPP = FiniteDPP(kernel_type='likelihood',
projection=False,

**{'L': phi.T.dot(phi)})

for _ in range(10):
# mode='GS': Gram-Schmidt (default)
DPP.sample_exact(mode='GS', random_state=rng)

print(DPP.list_of_samples)

[[3, 1, 0, 4], [9, 6], [4, 1, 3, 0], [7, 0, 6, 4], [5, 0, 7], [4, 0, 2],
→˓[5, 3, 8, 4], [0, 5, 2], [7, 0, 2], [6, 0, 3]]

• Sampling a DPP(L) for which each item is represented by a 𝑑 ≤ 𝑁 dimensional feature vector, all stored in a
feature matrix Φ ∈ R𝑑×𝑁 , so that L = Φ⊤Φ ⪰ 0𝑁 , can be done by following

Step 0. compute the so-called dual kernel �̃� = ΦΦ† ∈ R𝑑×, eigendecompose it L̃ = 𝑊∆𝑊⊤ and
recover the eigenvectors of L as 𝑉 = Φ⊤𝑊∆− 1

2 This corresponds to a cost of order 𝒪(𝑁𝑑2 + 𝑑3 +
𝑑2 +𝑁𝑑2).

Step 1. is adapted to: draw independent Bernoulli random variables𝐵𝑖 ∼ ℬer( 𝛿𝑖
1+𝛿𝑖

) for 𝑖 = 1, . . . , 𝑑
and collect ℬ = {𝑖 ; 𝐵𝑖 = 1}

Step 2. is adapted to: sample from the projection DPP with correlation kernel defined by its eigen-
vectors 𝑉:,ℬ =

[︀
Φ⊤𝑊∆−1/2

]︀
:,ℬ.

Important: Step 0. must be performed once and for all in 𝒪(𝑁𝑑2 + 𝑑3). Then the aver-
age cost of getting one sample by applying Steps 1. and 2. is 𝒪(𝑁E [|𝒳 |]2), where E [|𝒳 |] =

trace(L̃(I + L̃)−1) =
∑︀𝑑

𝑖=1
𝛿𝑖

1+𝛿𝑖
≤ 𝑑

See also:

For a different perspective see

– [Gil14] Section 2.4.4 and Algorithm 3

– [KT12] Section 3.3.3 and Algorithm 3

from numpy.random import RandomState
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

(continues on next page)
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(continued from previous page)

rng = RandomState(0)

r, N = 4, 10
phi = rng.randn(r, N) # L = phi.T phi, L_dual = phi phi.T

DPP = FiniteDPP(kernel_type='likelihood',
projection=False,

**{'L_gram_factor': phi})

for _ in range(10):
# mode='GS': Gram-Schmidt (default)
DPP.sample_exact(mode='GS', random_state=rng)

print(DPP.list_of_samples)

L_dual = Phi Phi.T was computed: Phi (dxN) with d<N
[[9, 0, 2, 3], [0, 1, 5, 2], [7, 0, 9, 4], [2, 0, 3], [6, 4, 0, 3], [5, 0,
→˓ 6, 3], [0, 6, 3, 9], [4, 0, 9], [7, 3, 9, 4], [9, 4, 3]]

Cholesky-based method

Main idea

This method requires access to the correlation kernel K to perform a bottom-up chain rule on sets: starting from the
empty set, each item in turn is decided to be added or excluded from the sample. This can be summarized as the
exploration of the binary probability tree displayed in Fig. 3.4.

Fig. 3.4: Probability tree corresponding to the chain rule on sets
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Example: for 𝑁 = 5, if {1, 4} was sampled, the path in the probability tree would correspond to

P[𝒳 = {1, 4}] =P[1 ∈ 𝒳 ]

× P[2 /∈ 𝒳 | 1 ∈ 𝒳 ]

× P[3 /∈ 𝒳 | 1 ∈ 𝒳 , 2 /∈ 𝒳 ]

× P[4 ∈ 𝒳 | 1 ∈ 𝒳 , {2, 3} ∩ 𝒳 = ∅]

× P[5 /∈ 𝒳 | {1, 4} ⊂ 𝒳 , {2, 3} ∩ 𝒳 = ∅] ,

where each conditional probability can be written in closed formed using (3.15) and (3.16), namely

P[𝑇 ⊂ 𝒳 | 𝑆 ⊂ 𝒳 ] = det
[︀
K𝑇 −K𝑇𝑆K

−1
𝑆 K𝑆𝑇

]︀
P[𝑇 ⊂ 𝒳 | 𝑆 ∩ 𝒳 = ∅] = det

[︀
K𝑇 −K𝑇𝑆(K𝑆 − 𝐼)−1K𝑆𝑇

]︀
.

Important: This quantities can be computed efficiently as they appear in the computation of the Cholesky-type
𝐿𝐷𝐿† or 𝐿𝑈 factorization of the correlation K kernel, in the Hermitian or non-Hermitian case, respectively. See
[Pou19] for the details.

Note: The sparsity of K can be leveraged to derive faster samplers using the correspondence between the chain rule
on sets and Cholesky-type factorizations, see e.g., [Pou19] Section 4.

In practice

Important:

• The method is fully generic since it applies to any (valid), even non-Hermitian, correlation kernel K.

• Each sample costs 𝒪(𝑁3).

• Nevertheless, the link between the chain rule on sets and Cholesky-type factorization is nicely supported by the
surprisingly simple implementation of the corresponding generic sampler.

# Poulson (2019, Algorithm 1) pseudo-code

sample = []
A = K.copy()

for j in range(N):

if np.random.rand() < A[j, j]: # Bernoulli(A_jj)
sample.append(j)

else:
A[j, j] -= 1

A[j+1:, j] /= A[j, j]
A[j+1:, j+1:] -= np.outer(A[j+1:, j], A[j, j+1:])

return sample, A
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from numpy.random import RandomState
from scipy.linalg import qr
from dppy.finite_dpps import FiniteDPP

rng = RandomState(1)

r, N = 4, 10
eig_vals = rng.rand(r)
eig_vecs, _ = qr(rng.randn(N, r), mode='economic')

DPP = FiniteDPP(kernel_type='correlation',
projection=False,

**{'K': (eig_vecs*eig_vals).dot(eig_vecs.T)})

for _ in range(10):
DPP.sample_exact(mode='Chol', random_state=rng)

print(DPP.list_of_samples)

[[2, 9], [0], [2], [6], [4, 9], [2, 7, 9], [0], [1, 9], [0, 1, 2], [2]]

See also:

• [Pou19]

• [LGD18]

Intermediate sampling method

Main idea

This method is based on the concept of a distortion-free intermediate sample, where we draw a larger sample of
points in such a way that we can then downsample to the correct DPP distribution. We assume access to the likelihood
kernel L (although a variant of this method also exists for projection DPPs). Crucially the sampling relies on an
important connection between DPPs and so-called ridge leverage scores (RLS, see [AM15]), which are commonly
used for sampling in randomized linear algebra. Namely, the marginal probability of the i-th point in 𝒳 ∼ DPP(L) is
also the i-th ridge leverage score of L (with ridge parameter equal 1):

P[𝑖 ∈ 𝒳 ] =
[︀
L(𝐼 + L)−1

]︀
𝑖𝑖

= 𝜏𝑖, 𝑖th 1-ridge leverage score.

Suppose that we draw a sample 𝜎 of 𝑡 points i.i.d. proportional to ridge leverage scores, i.e., 𝜎 = (𝜎1, 𝜎2, ..., 𝜎𝑡) such
that P[𝜎𝑗 = 𝑖] ∝ 𝜏𝑖. Intuitively, this sample is similar fo 𝒳 ∼ DPP(L) because the marginals are the same, but it
“ignores” all the dependencies between the points. However, if we sample sufficiently many points i.i.d. according
to RLS, then a proper sample 𝒳 will likely be contained within 𝜎. This can be formally shown for 𝑡 = 𝑂(E[|𝒳 |]2).
When E[|𝒳 |]2 ≪ 𝑁 , then this allows us to reduce the size of the DPP kernel L from 𝑁 ×𝑁 to a much smaller size L̃
𝑡× 𝑡. Making this sampling exact requires considerably more care, because even with a large 𝑡 there is always a small
probability that the i.i.d. sample 𝜎 is not sufficiently diverse. We guard against this possibility by rejection sampling.

Important: Use this method for sampling 𝒳 ∼ DPP(L) when E [|𝒳 |] ≪
√
𝑁 .

• Preprocessing costs 𝒪
(︀
𝑁 · poly(E [|𝒳 |]) polylog(𝑁)

)︀
.

• Each sample costs 𝒪
(︀
E[|𝒳 |]6

)︀
.

There are two implementations of intermediate sampling available in dppy: the mode='vfx' sampler and the
mode='alpha' sampler.
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In practice

from numpy.random import RandomState
from dppy.finite_dpps import FiniteDPP
from dppy.utils import example_eval_L_linear

rng = RandomState(1)

r, N = 4, 10

DPP = FiniteDPP('likelihood',

**{'L_eval_X_data': (example_eval_L_linear, rng.randn(N, r))})

for _ in range(10):
DPP.sample_exact(mode='vfx', random_state=rng, verbose=False)

print(DPP.list_of_samples)

[[5, 1, 0, 3], [9, 0, 8, 3], [6, 4, 1], [5, 1, 2], [2, 1, 3], [3, 8, 4, 0], [0, 8, 1],
→˓ [7, 8], [1, 8, 2, 0], [5, 8, 3]]

The verbose=False flag is used to suppress the default progress bars when running in batch mode (e.g. when
generating these docs).

Given, the RLS 𝜏1, . . . , 𝜏𝑁 , the normalization constant det(𝐼 + L̃𝜎) and access to the likelihood kernel L̃𝜎 , the
intermediate sampling method proceeds as follows:

repeat

sample 𝑡 ∼ Poisson(𝑘2 e1/𝑘), where 𝑘 = E[|𝒳 |]

sample 𝜎1, . . . , 𝜎𝑡 ∼ (𝜏1, . . . 𝜏𝑁 ),

sample Acc ∼Bernoulli
(︁ e𝑘 det(𝐼 + L̃𝜎)

e𝑡/𝑘 det(𝐼 + L)

)︁
, where �̃�𝑖𝑗 =

1

𝑘
√
𝜏𝑖𝜏𝑗

𝐿𝑖𝑗 ,

until
Acc = true

return

𝒳 = {𝜎𝑖 : 𝑖 ∈ 𝒳} where 𝒳 ∼ DPP(L̃𝜎)

It can be shown that 𝒳 is distributed exactly according to DPP(L) and the expected number of rejections is a small
constant. The intermediate likelihood kernel L̃𝜎 forms a 𝑡× 𝑡 DPP subproblem that can be solved using any other DPP
sampler.

• Since the size of the intermediate sample is 𝑡 = 𝒪(E[𝒳 ]2), the primary cost of the sampling is computing
det(𝐼 + L̃𝜎) which takes 𝒪(𝑡3) = 𝒪(E[𝒳 ]6) time. This is also the expected cost of sampling from DPP(L̃𝜎)
if we use, for example, the spectral method.

• The algorithm requires precomputing the RLS 𝜏1, . . . , 𝜏𝑛 and det(𝐼+L). Computing them exactly takes 𝒪(𝑁3),
however, surprisingly, if we use sufficiently accurate approximations then the exactness of the sampling can be
retained (details in [DerezinskiCV19]). Efficient methods for approximating leverage scores (see [RCCR18])
bring the precomputing cost down to 𝒪(𝑁poly(E [|𝒳 |])polylog(𝑁)).
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• When E[|𝒳 |] is sufficiently small, the entire sampling procedure only looks at a small fraction of the entries of
L. This makes the method useful when we want to avoid constructing the entire likelihood kernel.

• When the likelihood kernel is given implicitly via a matrix X such that L = XX⊤ (dual formulation) then a
version of this method is given by [Derezinski19]

• A variant of this method also exists for projection DPPs [DWH18]

See also:

• [DerezinskiCV19] (Likelihood kernel)

• [Derezinski19] (Dual formulation)

• [DWH18] (Projection DPP)

𝑘-DPPs

Main idea

Recall from (3.5) that 𝑘-DPP(L) can be viewed as a DPP(L) constrained to a have fixed cardinality 𝑘 ≤ rank(𝐿).

To generate a sample of 𝑘-DPP(L), one natural solution would be to use a rejection mechanism: draw 𝑆 ∼ DPP(L)
and keep it only if |𝑋| = 𝑘. However, the rejection constant may be pretty bad depending on the choice of 𝑘 regarding
the distribution of the number of points (3.9) of 𝑆 ∼ DPP(L).

An alternative solution was found by [KT12] Section 5.2.2. The procedure relies on a slight modification of Step 1. of
the Spectral method which requires the computation of the elementary symmetric polynomials.

In practice

Sampling 𝑘-DPP(L) from L ⪰ 0𝑁 can be done by following

Step 0.

a) compute the eigendecomposition of L = 𝑉 Γ𝑉 † in 𝒪(𝑁3)

b) evaluate the elementary symmetric polynomials in the eigenvalues of L: 𝐸[𝑙, 𝑛] := 𝑒𝑙(𝛾1, . . . , 𝛾𝑛)
for 0 ≤ 𝑙 ≤ 𝑘 and 0 ≤ 𝑛 ≤ 𝑁 . These computations can done recursively in 𝒪(𝑁𝑘) using Algorithm
7 of [KT12].

Step 1. is replaced by Algorithm 8 of [KT12] which we illustrate with the following pseudo-code

# Algorithm 8 of Kulesza Taskar (2012).
# This is a pseudo-code of in particular Python indexing is not
→˓respected everywhere

B = set({})
l = k

for n in range(N, 0, -1):

if Unif(0,1) < gamma[n] * E[l-1, n-1] / E[l, n]:
l -= 1
B.union({n})

if l == 0:
break
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Step 2. is adapted to: sample from the projection DPP with correlation kernel defined by its eigenvectors
𝑉:,ℬ, with a cost of order 𝒪(𝑁𝑘2).

Important: Step 0. must be performed once and for all in 𝒪(𝑁3 + 𝑁𝑘). Then the cost of getting one sample by
applying Steps 1. and 2. is 𝒪(𝑁𝑘2).

import numpy as np
from dppy.finite_dpps import FiniteDPP

rng = np.random.RandomState(1)

r, N = 5, 10
# Random feature vectors
Phi = rng.randn(r, N)
DPP = FiniteDPP('likelihood', **{'L': Phi.T.dot(Phi)})

k = 4
for _ in range(10):

DPP.sample_exact_k_dpp(size=k, random_state=rng)

print(DPP.list_of_samples)

[[1, 8, 5, 7], [3, 8, 5, 9], [5, 3, 1, 8], [5, 8, 2, 9], [1, 2, 9, 6], [1, 0, 2, 3],
→˓[7, 0, 3, 5], [8, 3, 7, 6], [0, 2, 3, 7], [1, 3, 7, 5]]

See also:

• sample_exact_k_dpp()

• Step 0. requires [KT12] Algorithm 7 for the recursive evaluation of the elementary symmetric polynomials
[𝑒𝑙(𝛾1, . . . , 𝛾𝑛)]𝑘,𝑁𝑙=1,𝑛=1 in the eigenvalues of L

• Step 1. calls [KT12] Algorithm 8 for selecting the eigenvectors for Step 2.

Caution

Attention: Since the number of points of 𝑘-DPP(L) is fixed, like for projection DPPs, it might be tempting to
sample 𝑘-DPP(L) using a chain rule in the way it was applied in (3.18) to sample projection DPPs. However, it
is incorrect: sampling sequentially

𝑠1 ∝ L𝑠,𝑠, then 𝑠𝑖 | 𝑠1, . . . , 𝑠𝑖−1 ∝ L𝑠,𝑠 − L𝑠,𝑆𝑖−1L𝑆𝑖−1

−1L𝑆𝑖−1,𝑠, for 2 ≤ 𝑖 ≤ 𝑘, (3.21)

where 𝑆𝑖−1 = {𝑠1, . . . , 𝑠𝑖−1}, and forgetting about the order 𝑠1, . . . , 𝑠𝑘 were selected does not provide a
subset {𝑠1, . . . , 𝑠𝑘} ∼ 𝑘-DPP(L), in the general case. Nevertheless, it is valid when L is an orthogonal
projection kernel!

Here are the reasons why

1. First keep in mind that, the ultimate goal is to draw a subset 𝑆 = {𝑠1, . . . , 𝑠𝑘} ∼ 𝑘-DPP(L) with probability
(3.5)

P[𝒳 = 𝑆] =
1

𝑒𝑘(L)
detL𝑆1|𝑆|=𝑘. (3.22)

3.1. Finite DPPs 29



2. Now, if we were to use the chain rule (3.21) this would correspond to sampling sequentially the items 𝑠1, . . . , 𝑠𝑘,
so that the resulting vector (𝑠1, . . . , 𝑠𝑘) has probability

Q[(𝑠1, . . . , 𝑠𝑘)] =
L𝑠1,𝑠1

𝑍1

𝑘∏︁
𝑖=2

L𝑠𝑖,𝑠𝑖 − L𝑠𝑖,𝑆𝑖−1L𝑆𝑖−1

−1L𝑆𝑖−1,𝑠𝑖

𝑍𝑖(𝑠1, . . . , 𝑠𝑖−1)

=
1

𝑍(𝑠1, . . . , 𝑠𝑘)
detL𝑆 .

(3.23)

Contrary to 𝑍1 = trace(L), the normalizations 𝑍𝑖(𝑠1, . . . , 𝑠𝑖−1) of the successive conditionals depend, a priori, on
the order 𝑠1, . . . , 𝑠𝑘 were selected. For this reason we denote the global normalization constant 𝑍(𝑠1, . . . , 𝑠𝑘).

Warning: Equation (3.23) suggests that, the sequential feature of the chain rule matters, a priori; the distribution
of (𝑠1, . . . , 𝑠𝑘) is not exchangeable a priori, i.e., it is not invariant to permutations of its coordinates. This fact,
would only come from the normalization 𝑍(𝑠1, . . . , 𝑠𝑘), since L𝑆 is invariant by permutation.

Note: To see this, let’s compute the normalization constant 𝑍𝑖(𝑠1, . . . , 𝑠𝑖−1) in (3.23) for a generic L ⪰ 0𝑁
factored as L = 𝑉 𝑉 †, with no specific assumption on 𝑉 .

𝑍𝑖(𝑠1, . . . , 𝑠𝑖−1) =

𝑁∑︁
𝑖=1

L𝑖𝑖 − L𝑖,𝑆𝑖−1L
−1
𝑆𝑖−1

L𝑆𝑖−1,𝑖

= trace(L− L:,𝑆𝑖−1

[︀
L𝑆𝑖−1

]︀−1
L𝑆𝑖−1,:)

= trace
(︁
L− 𝑉 𝑉 †

:,𝑆𝑖−1

[︀
𝑉𝑆𝑖−1,:𝑉

†
:,𝑆𝑖−1

]︀−1
𝑉𝑆𝑖−1,:𝑉

†
)︁

= trace
(︀
L𝑖𝑖 − 𝑉𝑆𝑖−1,:

†
[︁
𝑉𝑆𝑖−1,:𝑉𝑆𝑖−1,:

†
]︁−1

𝑉𝑆𝑖−1,:⏟  ⏞  
Π𝑉𝑆𝑖−1,:

𝑉 †𝑉
)︀

= trace(L) − trace(Π𝑉𝑆𝑖−1,:
𝑉 †𝑉 ),

(3.24)

where Π𝑉𝑆𝑖−1,:
denotes the orthogonal projection onto Span{𝑉𝑠1,:, . . . , 𝑉𝑠𝑖−1,:}, the supspace spanned the feature

vectors associated to 𝑠1, . . . , 𝑠𝑖−1.

Then, summing (3.23) over the 𝑘! permutations of 1, . . . , 𝑘, yields the probability of drawing the subset 𝑆 =
{𝑠1, . . . , 𝑠𝑘}, namely

Q[{𝑠1, . . . , 𝑠𝑘}] =
∑︁
𝜎∈S𝑘

Q[(𝑠𝜎(1), . . . , 𝑠𝜎(𝑘))] = detL𝑆

∑︁
𝜎∈S𝑘

1

𝑍(𝑠𝜎(1), . . . , 𝑠𝜎(𝑘))⏟  ⏞  
1/𝑍𝑆

.
(3.25)

3. For the chain rule (3.23) to be a valid procedure for sampling 𝑘-DPP(L), we must be able to identify (3.22) and
(3.25), i.e., Q[𝑆] = P[𝑆] for all |𝑆| = 𝑘, or equivalently 𝑍𝑆 = 𝑒𝑘(𝐿) for all |𝑆| = 𝑘.

Important: A sufficient condition (very likely to be necessary) is that the joint distribution of (𝑠1, . . . , 𝑠𝑘), generated
by the chain rule mechanism (3.23) is exchangeable (invariant to permutations of the coordinates). In that case, the
normalization in (3.23) would then be constant 𝑍(𝑠1, . . . , 𝑠𝑘) = 𝑍 . So that 𝑍𝑆 would in fact play the role of the
normalization constant of (3.25), since it would be constant as well and equal to 𝑍𝑆 = 𝑍

𝑘! . Finally, 𝑍𝑆 = 𝑒𝑘(𝐿) by
identification of (3.22) and (3.25).

This is what we can prove in the particular case where L is an orthogonal projection matrix.
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To do this, denote 𝑟 = rank(L) and recall that in this case L satisfies L2 = L and L† = L, so that it can be factored
as L = ΠL = L†L = LL†

Finally, we can plug 𝑉 = L in (3.24) to obtain

𝑍𝑖(𝑠1, . . . , 𝑠𝑖−1) = trace(L) − trace(ΠL𝑆𝑖−1,:
L†L)

= trace(ΠL) − trace(ΠL𝑆𝑖−1,:
ΠL)

= trace(ΠL) − trace(ΠL𝑆𝑖−1,:
)

= rank(ΠL) − rank(ΠL𝑆𝑖−1,:
)

= 𝑟 − (𝑖− 1) := 𝑍𝑖.

Thus, the normalization 𝑍(𝑠1, . . . , 𝑠𝑘) in (3.24) is constant as well equal to

𝑍(𝑠1, . . . , 𝑠𝑘) =

𝑘∏︁
𝑖=1

𝑍𝑖 =

𝑘∏︁
𝑖=1

𝑟 − (𝑖− 1) =
𝑟!

(𝑟 − 𝑘)!
= 𝑘!

(︂
𝑟

𝑘

)︂
= 𝑘!𝑒𝑘(L) := 𝑍,

where the last equality is a simple computation of the elementary symmetric polynomial

𝑒𝑘(L) = 𝑒𝑘(𝛾1:𝑟 = 1, 𝛾𝑟+1:𝑁 = 0) =
∑︁

𝑆⊂[𝑁 ]
|𝑆|=𝑘

∏︁
𝑠∈𝑆

𝛾𝑠 =

(︂
𝑟

𝑘

)︂

Important: This shows that, when L is an orthogonal projection matrix, the order the items 𝑠1, . . . , 𝑠𝑟 were selected
by the chain rule (3.23) can be forgotten, so that {𝑠1, . . . , 𝑠𝑟} can be considered as valid sample of 𝑘-DPP(L).

# For our toy example, this sub-optimized implementation is enough
# to illustrate that the chain rule applied to sample k-DPP(L)
# draws s_1, ..., s_k sequentially, with joint probability
# P[(s_1, ..., s_k)] = det L_S / Z(s_1, ..., s_k)
#
# 1. is exchangeable when L is an orthogonal projection matrix
# P[(s1, s2)] = P[(s_2, s_1)]
# 2. is a priori NOT exchangeable for a generic L >= 0
# P[(s1, s2)] /= P[(s_2, s_1)]

import numpy as np
import scipy.linalg as LA
from itertools import combinations, permutations

k, N = 2, 4
potential_samples = list(combinations(range(N), k))

rank_L = 3

rng = np.random.RandomState(1)

eig_vecs, _ = LA.qr(rng.randn(N, rank_L), mode='economic')

for projection in [True, False]:

eig_vals = 1.0 + (0.0 if projection else 2 * rng.rand(rank_L))
L = (eig_vecs * eig_vals).dot(eig_vecs.T)

(continues on next page)
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(continued from previous page)

proba = np.zeros((N, N))
Z_1 = np.trace(L)

for S in potential_samples:

for s in permutations(S):

proba[s] = LA.det(L[np.ix_(s, s)])

Z_2_s0 = np.trace(L - L[:, s[:1]].dot(LA.inv(L[np.ix_(s[:1], s[:1])])).
→˓dot(L[s[:1], :]))

proba[s] /= Z_1 * Z_2_s0

print('L is {}projection'.format('' if projection else 'NOT '))

print('P[s0, s1]', proba, sep='\n')
print('P[s0]', proba.sum(axis=0), sep='\n')
print('P[s1]', proba.sum(axis=1), sep='\n')

print(proba.sum(), '\n' if projection else '')

L is projection
P[s0, s1]
[[0. 0.09085976 0.01298634 0.10338529]
[0.09085976 0. 0.06328138 0.15368033]
[0.01298634 0.06328138 0. 0.07580691]
[0.10338529 0.15368033 0.07580691 0. ]]

P[s0]
[0.20723139 0.30782147 0.15207463 0.33287252]
P[s1]
[0.20723139 0.30782147 0.15207463 0.33287252]
1.0000000000000002

L is NOT projection
P[s0, s1]
[[0. 0.09986722 0.01463696 0.08942385]
[0.11660371 0. 0.08062998 0.20535251]
[0.01222959 0.05769901 0. 0.04170435]
[0.07995922 0.15726273 0.04463087 0. ]]

P[s0]
[0.20879253 0.31482896 0.13989781 0.33648071]
P[s1]
[0.20392803 0.4025862 0.11163295 0.28185282]
1.0
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3.1.4 MCMC sampling

Add/exchange/delete

[AGR16], [LJS16c] and [LJS16d] derived variants of a Metropolis sampler having for stationary distribution DPP(L)
(3.2). The proposal mechanism works as follows.

At state 𝑆 ⊂ [𝑁 ], propose 𝑆′ different from 𝑆 by at most 2 elements by picking

𝑠 ∼ 𝒰𝑆 and 𝑡 ∼ 𝒰[𝑁 ]∖𝑆 .

Then perform

Exchange

Pure exchange moves

𝑆′ ↔ 𝑆 ∖ 𝑠 ∪ 𝑡.

Add-Delete

Pure addition/deletion moves

• Add 𝑆′ ↔ 𝑆 ∪ 𝑡

• Delete 𝑆′ ↔ 𝑆 ∖ 𝑠

Add-Exchange-Delete

Mix of exchange and add-delete moves

• Delete 𝑆′ ↔ 𝑆 ∖ 𝑠

• Exchange 𝑆′ ↔ 𝑆 ∖ 𝑠 ∪ 𝑡

• Add 𝑆′ ↔ 𝑆 ∪ 𝑡

Hint: Because moves are allowed between subsets having at most 2 different elements, transitions are very local
inducing correlation, however fast mixing was proved.

import numpy as np
from dppy.finite_dpps import FiniteDPP

rng = np.random.RandomState(413121)

r, N = 4, 10

# Random feature vectors
Phi = rng.randn(r, N)
L = Phi.T.dot(Phi)
DPP = FiniteDPP('likelihood', **{'L': L})

DPP.sample_mcmc('AED', random_state=rng) # AED, AD, E
print(DPP.list_of_samples) # list of trajectories, here there's only one
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[[[0, 2, 3, 6], [0, 2, 3, 6], [0, 2, 3, 6], [0, 2, 3, 6], [0, 2, 3, 6], [0, 2, 3, 6],
→˓[0, 2, 6, 9], [0, 2, 6, 9], [2, 6, 9], [2, 6, 9]]]

See also:

• sample_mcmc()

• [AGR16], [LJS16c] and [LJS16d]

• Exact samplers for DPPs

Zonotope

[GBV17] target a projection DPP(K) with

K = Φ⊤[ΦΦ⊤]−1Φ,

where Φ, is the underlying 𝑟 ×𝑁 feature matrix satisfying rank(Φ) = rank(K) = 𝑟.

In this setting the Number of points is almost surely equal to 𝑟 and we have

P[𝒳 = 𝑆] = detK𝑆1|𝑆|=𝑟 =
det2 Φ:𝑆

det ΦΦ⊤ 1|𝑆|=𝑟 =
Vol2{𝜑𝑠}𝑠∈𝑆

det ΦΦ⊤ 1|𝑆|=𝑟. (3.26)

The original finite ground set is embedded into a continuous domain called a zonotope. The hit-and-run procedure is
used to move across this polytope and visit the different tiles. To recover the finite DPP samples one needs to identify
the tile in which the successive points lie, this is done by solving linear programs (LPs).

Hint: Sampling from a projection DPP boils down to solving randomized linear programs (LPs).

Important: For its LPs solving needs DPPy uses the cvxopt library, but cvxopt is not installed by default when
installing DPPy. Please refer to the installation instructions on GitHub for more details on how to install the necessary
dependencies.

from numpy.random import RandomState
from dppy.finite_dpps import FiniteDPP

rng = RandomState(413121)

r, N = 4, 10
A = rng.randn(r, N)

DPP = FiniteDPP('correlation', projection=True, **{'A_zono': A})

DPP.sample_mcmc('zonotope', random_state=rng)
print(DPP.list_of_samples) # list of trajectories, here there's only one

[[[2, 4, 5, 7], [2, 4, 5, 7], [2, 4, 5, 7], [1, 4, 5, 7], [1, 4, 5, 7], [1, 4, 5, 7],
→˓[0, 4, 7, 8], [0, 2, 7, 9], [0, 2, 7, 9], [2, 4, 5, 7]]]

Note: On the one hand, the Zonotope perspective on sampling projection DPPs yields a better exploration of the state
space. Using hit-and-run, moving to any other state is possible but at the cost of solving LPs at each step. On the other
hand, the Add/exchange/delete view allows to perform cheap but local moves.
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See also:

• sample_mcmc()

• [GBV17]

k-DPPs

To preserve the size 𝑘 of the samples of 𝑘-DPP(L), only Exchange moves can be performed.

Caution: 𝑘 must satisfy 𝑘 ≤ rank(𝐿)

from numpy.random import RandomState
from dppy.finite_dpps import FiniteDPP

rng = RandomState(123)

r, N = 5, 10

# Random feature vectors
Phi = rng.randn(r, N)
L = Phi.T.dot(Phi)
DPP = FiniteDPP('likelihood', **{'L': L})

k = 3
DPP.sample_mcmc_k_dpp(size=k, random_state=rng)
print(DPP.list_of_samples) # list of trajectories, here there's only one

[[[7, 2, 5], [7, 2, 5], [7, 2, 9], [7, 8, 9], [7, 8, 9], [7, 8, 2], [7, 8, 2], [6, 8,
→˓2], [1, 8, 2], [1, 8, 2]]]

See also:

• sample_mcmc_k_dpp()

• [LJS16a] for a core-set perspective

• Exact sampling of k-DPPs

3.1.5 Approximate sampling

[LJS16b]

Todo: In a near future this section will include approximation of the kernel through random projections.
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3.1.6 API

Implementation of FiniteDPP object which has 6 main methods:

• sample_exact(), see also sampling DPPs exactly

• sample_exact_k_dpp(), see also sampling k-DPPs exactly

• sample_mcmc(), see also sampling DPPs with MCMC

• sample_mcmc_k_dpp(), see also sampling k-DPPs with MCMC

• compute_K(), to compute the correlation 𝐾 kernel from initial parametrization

• compute_L(), to compute the likelihood 𝐿 kernel from initial parametrization

class dppy.finite_dpps.FiniteDPP(kernel_type, projection=False, **params)
Bases: object

Finite DPP object parametrized by

Parameters

• kernel_type (string) –

– 'correlation'K kernel

– 'likelihood' L kernel

• projection (bool, default False) – Indicate whether the provided kernel is of projection
type. This may be useful when the FiniteDPP object is defined through its correlation
kernel K.

• params (dict) – Dictionary containing the parametrization of the underlying

– correlation kernel

* {'K': K}, with 0 ⪯ K ⪯ 𝐼

* {'K_eig_dec': (eig_vals, eig_vecs)}, with 0 ≤ 𝑒𝑖𝑔𝑣𝑎𝑙𝑠 ≤ 1

* {'A_zono': A}, with 𝐴(𝑑×𝑁) and rank(𝐴) = 𝑑

– likelihood kernel

* {'L': L}, with L ⪰ 0

* {'L_eig_dec': (eig_vals, eig_vecs)}, with 𝑒𝑖𝑔𝑣𝑎𝑙𝑠 ≥ 0

* {'L_gram_factor': Phi}, with L = Φ⊤Φ

* {'L_eval_X_data': (eval_L, X_data)}, with X𝑑𝑎𝑡𝑎(𝑁×𝑑) and 𝑒𝑣𝑎𝑙_𝐿
a likelihood function such that L = 𝑒𝑣𝑎𝑙_𝐿(X𝑑𝑎𝑡𝑎, {𝑋𝑑𝑎𝑡𝑎). For a full description
of the requirements imposed on eval_L’s interface, see the documentation dppy.
vfx_sampling.vfx_sampling_precompute_constants(). For an ex-
ample, see the implementation of any of the kernels provided by scikit-learn (e.g.
sklearn.gaussian_process.kernels.PairwiseKernel).

Caution: For now we only consider real valued matrices K,L, 𝐴,Φ,X𝑑𝑎𝑡𝑎.

See also:

• Definition
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• Exact sampling

Todo: add .kernel_rank attribute

compute_K(msg=False)
Compute the correlation kernel K from the original parametrization of the FiniteDPP object.

The kernel is stored in the K attribute.

See also:

Relation between correlation and likelihood kernels

compute_L(msg=False)
Compute the likelihood kernel L from the original parametrization of the FiniteDPP object.

The kernel is stored in the L attribute.

See also:

Relation between correlation and likelihood kernels

flush_samples()
Empty the list_of_samples attribute.

info()
Display infos about the FiniteDPP object

plot_kernel(kernel_type='correlation', save_path='')
Display a heatmap of the kernel used to define the FiniteDPP object (correlation kernel K or likelihood
kernel L)

Parameters

• kernel_type (str) – Type of kernel ('correlation' or 'likelihood'), de-
fault 'correlation'

• save_path (str) – Path to save plot, if empty (default) the plot is not saved.

sample_exact(mode='GS', **params)
Sample exactly from the corresponding FiniteDPP object.

Parameters

• mode (string, default 'GS') –

– projection=True:

* 'GS' (default): Gram-Schmidt on the rows of K.

* 'Chol' [Pou19] Algorithm 3

* 'Schur': when DPP defined from correlation kernel K, use Schur complement
to compute conditionals

– projection=False:

* 'GS' (default): Gram-Schmidt on the rows of the eigenvectors of K selected in
Phase 1.

* 'GS_bis': Slight modification of 'GS'

* 'Chol' [Pou19] Algorithm 1

* 'KuTa12': Algorithm 1 in [KT12]
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* 'vfx': the dpp-vfx rejection sampler in [DerezinskiCV19]

* 'alpha': the alpha-dpp rejection sampler in [CDerezinskiV20]

• params (dict) – Dictionary containing the parameters for exact samplers with keys

– 'random_state' (default None)

– If mode='vfx'

See dpp_vfx_sampler() for a full list of all parameters accepted by ‘vfx’
sampling. We report here the most impactful

* 'rls_oversample_dppvfx' (default 4.0) Oversampling parameter used
to construct dppvfx’s internal Nystrom approximation. This makes each rejec-
tion round slower and more memory intensive, but reduces variance and the
number of rounds of rejections.

* 'rls_oversample_bless' (default 4.0) Oversampling parameter used
during bless’s internal Nystrom approximation. This makes the one-time pre-
processing slower and more memory intensive, but reduces variance and the
number of rounds of rejections

Empirically, a small factor [2,10] seems to work for both parameters. It is sug-
gested to start with a small number and increase if the algorithm fails to terminate.

– If mode='alpha'

See alpha_k_dpp_sampler() for a full list of all parameters accepted by
‘alpha’ sampling. We report here the most impactful

* 'rls_oversample_alphadpp' (default 4.0) Oversampling parameter
used to construct alpha-dpp’s internal Nystrom approximation. This makes
each rejection round slower and more memory intensive, but reduces variance
and the number of rounds of rejections.

* 'rls_oversample_bless' (default 4.0) Oversampling parameter used
during bless’s internal Nystrom approximation. This makes the one-time pre-
processing slower and more memory intensive, but reduces variance and the
number of rounds of rejections

Empirically, a small factor [2,10] seems to work for both parameters. It is sug-
gested to start with a small number and increase if the algorithm fails to terminate.

Returns Returns a sample from the corresponding FiniteDPP object. In any case, the sample
is appended to the list_of_samples attribute as a list.

Return type list

Note: Each time you call this method, the sample is appended to the list_of_samples attribute as a
list.

The list_of_samples attribute can be emptied using flush_samples()

Caution: The underlying kernel K, resp. L must be real valued for now.

See also:

• Exact sampling
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• flush_samples()

• sample_mcmc()

sample_exact_k_dpp(size, mode='GS', **params)
Sample exactly from k-DPP. A priori the FiniteDPP object was instanciated by its likelihood L kernel
so that

Pk-DPP(𝒳 = 𝑆) ∝ detL𝑆 1|𝑆|=𝑘

Parameters

• size (int) – size 𝑘 of the k-DPP

• mode (string, default 'GS') –

– projection=True:

* 'GS' (default): Gram-Schmidt on the rows of K.

* 'Schur': Use Schur complement to compute conditionals.

– projection=False:

* 'GS' (default): Gram-Schmidt on the rows of the eigenvectors of K se-
lected in Phase 1.

* 'GS_bis': Slight modification of 'GS'

* 'KuTa12': Algorithm 1 in [KT12]

* 'vfx': the dpp-vfx rejection sampler in [DerezinskiCV19]

* 'alpha': the alpha-dpp rejection sampler in [CDerezinskiV20]

• params (dict) – Dictionary containing the parameters for exact samplers with
keys

'random_state' (default None)

– If mode='vfx'

See k_dpp_vfx_sampler() for a full list of all parameters accepted
by ‘vfx’ sampling. We report here the most impactful

* 'rls_oversample_dppvfx' (default 4.0) Oversampling param-
eter used to construct dppvfx’s internal Nystrom approximation. This
makes each rejection round slower and more memory intensive, but
reduces variance and the number of rounds of rejections.

* 'rls_oversample_bless' (default 4.0) Oversampling parame-
ter used during bless’s internal Nystrom approximation. This makes
the one-time pre-processing slower and more memory intensive, but
reduces variance and the number of rounds of rejections

Empirically, a small factor [2,10] seems to work for both parameters. It is
suggested to start with a small number and increase if the algorithm fails
to terminate.

– If mode='alpha' See alpha_k_dpp_sampler() for a full list of all
parameters accepted by ‘alpha’ sampling. We report here the most impactful

* 'rls_oversample_alphadpp' (default 4.0) Oversampling param-
eter used to construct alpha-dpp’s internal Nystrom approximation. This
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makes each rejection round slower and more memory intensive, but re-
duces variance and the number of rounds of rejections.

* 'rls_oversample_bless' (default 4.0) Oversampling parameter
used during bless’s internal Nystrom approximation. This makes the one-
time pre-processing slower and more memory intensive, but reduces vari-
ance and the number of rounds of rejections

* 'early_stop' (default False) Wheter to return as soon as a k-DPP
sample is drawn, or to continue with alpha-dpp internal binary search to
make subsequent sampling faster.

Empirically, a small factor [2,10] seems to work for both parameters. It is
suggested to start with a small number and increase if the algorithm fails to
terminate.

Returns

A sample from the corresponding k-DPP.

In any case, the sample is appended to the list_of_samples attribute as a list.

Return type list

Note: Each time you call this method, the sample is appended to the list_of_samples attribute as
a list.

The list_of_samples attribute can be emptied using flush_samples()

Caution: The underlying kernel K, resp. L must be real valued for now.

See also:

• sample_exact()

• sample_mcmc_k_dpp()

sample_mcmc(mode, **params)
Run a MCMC with stationary distribution the corresponding FiniteDPP object.

Parameters

• mode (string) –

– 'AED' Add-Exchange-Delete

– 'AD' Add-Delete

– 'E' Exchange

– 'zonotope' Zonotope sampling

• params (dict) – Dictionary containing the parameters for MCMC samplers with
keys

'random_state' (default None)

– If mode='AED','AD','E'

* 's_init' (default None) Starting state of the Markov chain
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* 'nb_iter' (default 10) Number of iterations of the chain

* 'T_max' (default None) Time horizon

* 'size' (default None) Size of the initial sample for mode='AD'/'E'

· rank(K) = trace(K) for projection K (correlation) kernel and
mode='E'

– If mode='zonotope':

* 'lin_obj' linear objective in main optimization problem (default
np.random.randn(N))

* 'x_0' initial point in zonotope (default A*u, u~U[0,1]^n)

* 'nb_iter' (default 10) Number of iterations of the chain

* 'T_max' (default None) Time horizon

Returns

The last sample of the trajectory of Markov chain.

In any case, the full trajectory of the Markov chain, made of params['nb_iter']
samples, is appended to the list_of_samples attribute as a list of lists.

Return type list

Note: Each time you call this method, the full trajectory of the Markov chain, made of
params['nb_iter'] samples, is appended to the list_of_samples attribute as a list of lists.

The list_of_samples attribute can be emptied using flush_samples()

See also:

• MCMC sampling

• sample_exact()

• flush_samples()

sample_mcmc_k_dpp(size, mode='E', **params)
Calls sample_mcmc() with mode='E' and params['size'] = size

See also:

• MCMC sampling

• sample_mcmc()

• sample_exact_k_dpp()

• flush_samples()
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3.2 Continuous DPPs

3.2.1 Definition

Point Process

Let X = R𝑑,C𝑑 or S𝑑−1 be the ambient space, we endow it with the corresponding Borel 𝜎-algebra ℬ(X) together
with a reference measure 𝜇.

For our purpose, we consider point processes as locally finite random subsets 𝒳 ⊂ X i.e.

∀𝐶 ⊂ X compact, #(𝒳 ∩ 𝐶) <∞.

Hint: A point process is a random subset of points 𝒳 , {𝑋1, . . . , 𝑋𝑁} ⊂ X with 𝑁 being random.

See also:

More formal definitions can be found in [MollerW04] Section 2 and [Joh06] Section 2 and bibliography therein.

To understand the interaction between the points of a point process, one focuses on the interaction of each cloud of 𝑘
points (for all 𝑘). The corresponding 𝑘-correlation functions characterize the underlying point process.

Correlation functions

For 𝑘 ≥ 0, the 𝑘-correlation function 𝜌𝑘 is defined by:

∀𝑓 : X𝑘 → C bounded measurable

E

⎡⎢⎢⎣ ∑︁
(𝑋1,...,𝑋𝑘)

𝑋1 ̸=···̸=𝑋𝑘∈𝒳

𝑓(𝑋1, . . . , 𝑋𝑘)

⎤⎥⎥⎦ =

∫︁
X𝑘

𝑓(𝑥1, . . . , 𝑥𝑘)𝜌𝑘(𝑥1, . . . , 𝑥𝑘)

𝑘∏︁
𝑖=1

𝜇(𝑑𝑥𝑖).

Hint:

The 𝑘-correlation function does not always exists, but but when they do, they have a meaningful interpre-
tation.

”𝜌𝑘(𝑥1, . . . , 𝑥𝑘)𝜇(𝑑𝑥1), . . . , 𝜇(𝑑𝑥𝑁 ) = P
[︂

there is 1 point in each
𝐵(𝑥1, 𝑑𝑥1), . . . , 𝐵(𝑥𝑛, 𝑑𝑥𝑛)

]︂
”,

where 𝐵(𝑥, 𝑑𝑥) denotes the ball centered at 𝑥 with radius 𝑑𝑥.

A Determinant Point Process (DPP) is a point process on (X,ℬ(X), 𝜇) parametrized by a kernel 𝐾 associated to the
reference measure 𝜇. The 𝑘-correlation functions read

∀𝑘 ≥ 1, 𝜌𝑘(𝑥1, . . . , 𝑥𝑘) = det[𝐾(𝑥𝑖, 𝑥𝑗)]
𝑘
𝑖,𝑗=1.

See also:

[Mac75] [Sos00] [Joh06] [HKPVirag06]
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Existence

One can view 𝐾 as an integral operator on 𝐿2(𝜇)

∀𝑥 ∈ X,𝐾𝑓(𝑥) =

∫︁
X
𝐾(𝑥, 𝑦)𝑓(𝑦)𝜇(𝑑𝑦).

To access spectral properties of the kernel, it is common practice to assume 𝐾

1. Hilbert Schmidt

∫︁∫︁
X×X

|𝐾(𝑥, 𝑦)|2𝜇(𝑑𝑥)𝜇(𝑑𝑦) <∞,

2. Self-adjoint equiv. Hermitian

𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥),

3. Locally trace class

∀𝐵 ⊂ X compact,
∫︁
𝐵

𝐾(𝑥, 𝑥)𝜇(𝑑𝑥) <∞.

Hint:

• 1. implies 𝐾 to be a continuous compact operator.

• 2. with 1. allows to apply the spectral theorem, providing

𝐾(𝑥, 𝑦) =

∞∑︁
𝑛=0

𝜆𝑛𝜑𝑛(𝑥)𝜑𝑛(𝑦), where 𝐾𝜑𝑛 = 𝜆𝑛𝜑𝑛.

• 3. makes sure there is no accumulation of points: |𝒳 ∩ 𝐵| =
∫︀
𝐵
𝐾(𝑥, 𝑥)𝜇(𝑑𝑥) ≤ ∞, see also Number of

points

Warning: These are only sufficient conditions, there indeed exist DPPs with non symmetric kernels, see, e.g.,
Carries process.

Important: Under assumptions 1, 2, and 3

DPP(𝐾) exists ⇐⇒ 0 ≤ 𝜆𝑛 ≤ 1, ∀𝑛 ∈ N

See also:

• Remarks 1-2 and Theorem 3 [Sos00]

• Theorem 22 [HKPVirag06]
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Projection DPPs

DPP(𝐾) is said to be a projection DPP with reference measure 𝜇 when 𝐾 : X × X → C is a orthogonal projection
kernel, that is

𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥) and
∫︁
X
𝐾(𝑥, 𝑧)𝐾(𝑧, 𝑦)𝜇(𝑑𝑧) = 𝐾(𝑥, 𝑦)

Construction

A canonical way to construct DPPs generating configurations of at most 𝑁 points is the following.

Consider 𝑁 orthonormal functions 𝜑0, ..., 𝜑𝑁1 ∈ 𝐿2(𝜇)∫︁
𝜑𝑘(𝑥)𝜑𝑙(𝑥)𝜇(𝑑𝑥) = 𝛿𝑘𝑙,

and attach [0, 1]-valued coefficients 𝜆𝑛 such that

𝐾(𝑥, 𝑦) =

𝑁−1∑︁
𝑛=0

𝜆𝑛𝜑𝑛(𝑥)𝜑𝑛(𝑦).

The special case where 𝜆0 = · · · = 𝜆𝑁−1 = 1 corresponds to the construction of a projection DPP with 𝑁 points.

See also:

• Number of points

• Lemma 21 [HKPVirag06]

• Proposition 2.11 [Joh06] biorthogonal families

3.2.2 Properties

Generic DPPs as mixtures of projection DPPs

Projection DPPs are the building blocks of the model in the sense that generic DPPs are mixtures of projection DPPs.

Consider 𝒳 ∼ DPP(𝐾) and write the spectral decomposition of the corresponding kernel as

𝐾 =

∞∑︁
𝑛=1

𝜆𝑛𝜑(𝑥)𝜑(𝑦).

Then, denote 𝒳𝐵 ∼ DPP(𝐾𝐵) with

𝐾 =

∞∑︁
𝑛=1

𝐵𝑛𝜑(𝑥)𝜑(𝑦), where 𝐵𝑛 ∼ ℬ𝑒𝑟(𝜆𝑛) are independent,

𝒳𝐵 is obtained by first sampling 𝐵1, . . . , 𝐵𝑁 independently and then sampling conditionally from DPP(𝐾𝐵), the
DPP with orthogonal projection kernel 𝐾𝐵 .

Finally, we have 𝒳 𝑑
= 𝒳𝐵 .

See also:

• Theorem 7 in [HKPVirag06]

• Finite case of Generic DPPs as mixtures of projection DPPs

• Sampling
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Linear statistics

Expectation

E

[︃∑︁
𝑋∈𝒳

𝑓(𝑋)

]︃
=

∫︁
𝑓(𝑥)𝐾(𝑥, 𝑥)𝜇(𝑑𝑥) = trace(𝐾𝑓) = trace(𝑓𝐾).

Variance

Var

[︃∑︁
𝑋∈𝒳

𝑓(𝑋)

]︃
= E

⎡⎣ ∑︁
𝑋 ̸=𝑌 ∈𝒳

𝑓(𝑋)𝑓(𝑌 ) +
∑︁
𝑋∈𝒳

𝑓(𝑋)2

⎤⎦− E

[︃∑︁
𝑋∈𝒳

𝑓(𝑋)

]︃2

=

∫︁∫︁
𝑓(𝑥)𝑓(𝑦)[𝐾(𝑥, 𝑥)𝐾(𝑦, 𝑦) −𝐾(𝑥, 𝑦)𝐾(𝑦, 𝑥)]𝜇(𝑑𝑥)𝜇(𝑑𝑦)

+

∫︁
𝑓(𝑥)2𝐾(𝑥, 𝑥)𝜇(𝑑𝑥) −

[︂∫︁
𝑓(𝑥)𝐾(𝑥, 𝑥)𝜇(𝑑𝑥)

]︂2
=

∫︁
𝑓(𝑥)2𝐾(𝑥, 𝑥)𝜇(𝑑𝑥) −

∫︁∫︁
𝑓(𝑥)𝑓(𝑦)𝐾(𝑥, 𝑦)𝐾(𝑦, 𝑥)𝜇(𝑑𝑥)𝜇(𝑑𝑦)

= trace(𝑓2𝐾) − trace(𝑓𝐾𝑓𝐾).

a. Hermitian kernel i.e. 𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥)

Var

[︃∑︁
𝑋∈𝒳

𝑓(𝑋)

]︃
=

∫︁
𝑓(𝑥)2𝐾(𝑥, 𝑥)𝜇(𝑑𝑥) −

∫︁∫︁
𝑓(𝑥)𝑓(𝑦)|𝐾(𝑥, 𝑦)|2𝜇(𝑑𝑥)𝜇(𝑑𝑦).

b. Orthogonal projection case i.e. 𝐾2 = 𝐾 = 𝐾*

Using 𝐾(𝑥, 𝑥) =
∫︀
𝐾(𝑥, 𝑦)𝐾(𝑦, 𝑥)𝜇(𝑑𝑦) =

∫︀
|𝐾(𝑥, 𝑦)|2𝜇(𝑑𝑦),

Var

[︃∑︁
𝑋∈𝒳

𝑓(𝑋)

]︃
=

1

2

∫︁∫︁
[𝑓(𝑥) − 𝑓(𝑦)]2|𝐾(𝑥, 𝑦)|2𝜇(𝑑𝑦)𝜇(𝑑𝑥).

Number of points

For projection DPPs, i.e., when 𝐾 is the kernel associated to an orthogonal projector, one can show that |𝒳 | =
rank(𝐾) = Trace(𝐾) almost surely (see, e.g., [HKPVirag06] Lemma 17).

In the general case, based on the fact that generic DPPs are mixtures of projection DPPs, we have

|𝒳 | =

∞∑︁
𝑖=1

ℬer(𝜆𝑖).

Note:

• For any Borel set𝐵, instantiating 𝑓 = 1𝐵 yields nice expressions for the expectation and variance of the number
of points falling in 𝐵.
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See also:

Number of points in the finite case

Thinning

Important: The class of DPPs is closed under independent thinning.

Let 𝜆 > 1. The configuration of points 𝒳 𝜆 obtained after subsampling the points of a configuration 𝒳 ∼ DPP(𝐾)
with i.i.d. ℬer

(︀
1
𝜆

)︀
is still a DPP with kernel 1

𝜆𝐾. To see this, let’s compute the correlation functions of the thinned
process

E

⎡⎢⎢⎢⎣ ∑︁
(𝑥1,...,𝑥𝑘)

𝑥𝑖 ̸=𝑥𝑗∈𝒳𝜆

𝑓(𝑥1, . . . , 𝑥𝑘)

⎤⎥⎥⎥⎦ = E

⎡⎢⎢⎣E
⎡⎢⎢⎣ ∑︁
(𝑥1,...,𝑥𝑘)
𝑥𝑖 ̸=𝑥𝑗∈𝒳

𝑓(𝑥1, . . . , 𝑥𝑘)

𝑘∏︁
𝑖=1

1{𝑥𝑖∈𝒳𝜆}

⃒⃒⃒⃒
⃒𝒳
⎤⎥⎥⎦
⎤⎥⎥⎦

= E

⎡⎢⎢⎣ ∑︁
(𝑥1,...,𝑥𝑘)
𝑥𝑖 ̸=𝑥𝑗∈𝒳

𝑓(𝑥1, . . . , 𝑥𝑘)E

[︃
𝑘∏︁

𝑖=1

𝐵𝑖

⃒⃒⃒⃒
⃒𝒳
]︃⎤⎥⎥⎦

= E

⎡⎢⎢⎣ ∑︁
(𝑥1,...,𝑥𝑘)
𝑥𝑖 ̸=𝑥𝑗∈𝒳

𝑓(𝑥1, . . . , 𝑥𝑘)
1

𝜆𝑘

⎤⎥⎥⎦
=

∫︁
𝑓(𝑥1, . . . , 𝑥𝑘) det

[︂
1

𝜆
𝐾(𝑥𝑖, 𝑥𝑗)

]︂
1≤𝑖,𝑗≤𝑘

𝜇⊗𝑘(𝑑𝑥).

3.2.3 Sampling

In contrast to the finite case where the ML community has put efforts in improving the efficiency and tractability of
the sampling routine, much less has been done in the continuous setting.

Exact sampling

In this section, we describe the main techniques for sampling exactly continuous DPPs.

As for finite DPPs the most prominent one relies on the fact that generic DPPs are mixtures of projection DPPs.
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Projection DPPs: the chain rule

Let’s focus on sampling from projection DPP(𝐾) with a real-valued orthogonal projection kernel 𝐾 : X × X → R
and reference measure 𝜇, that is

𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥) and
∫︁
X
𝐾(𝑥, 𝑧)𝐾(𝑧, 𝑦)𝜇(𝑑𝑧) = 𝐾(𝑥, 𝑦)

In this setting, recall that the number of points is 𝜇-almost surely equal to 𝑟 = rank(𝐾).

To generate a valid sample 𝑋 = {𝑥1, . . . , 𝑥𝑟} ∼ DPP(𝐾), [HKPVirag06] Proposition 19 showed that it is sufficient
to apply the chain rule to sample (𝑥1, . . . , 𝑥𝑟) with joint distribution

P[(𝑥1, . . . , 𝑥𝑟)] =
1

𝑟!
det[𝐾(𝑥𝑝, 𝑥𝑞)]𝑟𝑝,𝑞=1𝜇

⊗𝑟(𝑑𝑥1:𝑟) (3.27)

and forget the order the points were selected.

The original projection DPP sampler of [HKPVirag06] Algorithm 18, was given in an abstract form, which can be
implemented using the following strategy. Write the determinant in (3.27) as a telescopic product of ratios of determi-
nants and use Schur complements to get

P[(𝑥1, . . . , 𝑥𝑟)] =
𝐾(𝑥1, 𝑥1)

𝑟
𝜇(𝑑𝑥1)

𝑟∏︁
𝑖=2

1

𝑟 − (𝑖− 1)

detK𝑖

detK𝑖−1
𝜇(𝑑𝑥𝑖)

=
𝐾(𝑥1, 𝑥1)

𝑟
𝜇(𝑑𝑥1)

𝑟∏︁
𝑖=2

𝐾(𝑥𝑖, 𝑥𝑖) −K𝑖−1(𝑥𝑖)
⊤K−1

𝑖−1K𝑖−1(𝑥𝑖)

𝑟 − (𝑖− 1)
𝜇(𝑑𝑥𝑖),

(3.28)

where K𝑖−1 = [𝐾(𝑥𝑝, 𝑥𝑞)]𝑖−1
𝑝,𝑞=1 and K𝑖−1(𝑥) = (𝐾(𝑥, 𝑥1), . . . ,𝐾(𝑥, 𝑥𝑖−1))⊤.

Important:

a) The expression (3.27) indeed defines a probability distribution, with normalization constant 𝑟!. In particular this
distribution is exchangeable, i.e., invariant by permutation of the coordinates.

b) The successive ratios that appear in (3.28) are the normalized conditional densities (w.r.t. 𝜇) that drive the chain
rule. The associated normalizing constants 𝑟 − (𝑖− 1) are independent of the previous points.

c) Sampling projection DPPs does not require the eigendecomposition of the kernel!

Hint: MLers will recognize (3.28) as the incremental posterior variance of a noise-free Gaussian Process (GP) model
with kernel 𝐾, see [RW06] Equation 2.26.

Caution: The connexion between the chain rule (3.28) and Gaussian Processes is valid in the case where the GP
kernel is an orthogonal projection kernel, see also Caution.
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Geometrical interpretation

When the eigendecomposition of the kernel is available, the chain rule can be interpreted and implemented from a
geometrical perspective, see, e.g., [LMollerR12] Algorithm 1.

Writing the Gram formulation of the kernel as

𝐾(𝑥, 𝑦) =

𝑟∑︁
𝑖=1

𝜑𝑖(𝑥)𝜑𝑖(𝑦) = Φ(𝑥)⊤Φ(𝑦),

where Φ(𝑥) , (𝜑1(𝑥), . . . , 𝜑𝑟(𝑥)) denotes the feature vector associated to 𝑥 ∈ X.

The joint distribution (3.27) reads

P[(𝑥1, . . . , 𝑥𝑟)] =
1

𝑟!
det[Φ(𝑥𝑝)⊤Φ(𝑥𝑞))]𝑟𝑝,𝑞=1𝜇

⊗𝑟(𝑑𝑥1:𝑟)

=
1

𝑟!
Volume2{Φ(𝑥1), . . . ,Φ(𝑥𝑟)}𝜇⊗𝑟(𝑑𝑥1:𝑟),

(3.29)

Hint: The joint distribution (3.29) characterizes the fact that projection DPP(𝐾) favor sets of 𝑟 = rank(K) points
(𝑥1, . . . , 𝑥𝑟) whose feature vectors Φ(𝑥1), . . .Φ(𝑥𝑟) span a large volume. This is another way of understanding the
repulsive/diversity feature of DPPs.

Then, the previous telescopic product of ratios of determinants in (3.28) can be understood as the base × height
formula applied to compute Volume2{Φ(𝑥1), . . . ,Φ(𝑥𝑟)}, so that

P[(𝑥1, . . . , 𝑥𝑟)] =

⟨︀
Φ(𝑥1)⊤Φ(𝑥1)

⟩︀
𝑟

𝜇(𝑑𝑥1)

𝑟∏︁
𝑖=2

1

𝑟 − (𝑖− 1)

detK𝑖

detK𝑖−1
𝜇(𝑑𝑥𝑖)

=
‖Φ(𝑥1)‖2

𝑟
𝜇(𝑑𝑥1)

𝑟∏︁
𝑖=2

distance2 (Φ(𝑥𝑖),Span{Φ(𝑥1), . . . ,Φ(𝑥𝑖−1)})

𝑟 − (𝑖− 1)
𝜇(𝑑𝑥𝑖),

(3.30)

where K𝑖−1 =
[︀⟨︀

Φ(𝑥𝑝)⊤Φ(𝑥𝑞)
⟩︀]︀𝑖−1

𝑝,𝑞=1
.

Hint: The overall procedure is akin to a sequential Gram-Schmidt orthogonalization of Φ(𝑥1), . . . ,Φ(𝑥𝑁 ).

Attention: In contrast to the finite case where the conditionals are simply probability vectors, the chain rule
formulations (3.28) and (3.30) require sampling from a continuous distribution. This can be done using a rejection
sampling mechanism but finding a good proposal density with tight rejection bounds is a challenging problem
[LMollerR12] Section 2.4. But it is achievable in some specific cases, see, e.g., Multivariate Jacobi Ensemble.

See also:

• Algorithm 18 [HKPVirag06] for the original abstract projection DPP sampler

• Projection DPPs: the chain rule in the finite case

• Some Orthogonal Polynomial Ensembles (specific instances of projection DPPs) can be sampled in 𝒪(𝑟2) by
computing the eigenvalues of properly randomised tridiagonal matrices.

• The multivariate Jacobi ensemble whose sample() method relies on the chain rule described by (3.30).
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Generic DPPs: the spectral method

The procedure stems from the fact that generic DPPs are mixtures of projection DPPs, suggesting the following two
steps algorithm. Given the spectral decomposition of the kernel

𝐾(𝑥, 𝑦) =

∞∑︁
𝑖=1

𝜆𝑖𝜑𝑖(𝑥)𝜑𝑖(𝑦), (3.31)

Step 1. Draw 𝐵𝑖 ∼ ℬer(𝜆𝑖) independently and note {𝑖1, . . . , 𝑖𝑁} = {𝑖 ; 𝐵𝑖 = 1},

Step 2. Sample from the projection DPP with kernel �̃�(𝑥, 𝑦) =
∑︀𝑁

𝑛=1 𝜑𝑖𝑛(𝑥)𝜑𝑖𝑛(𝑦).

Important:

• Step 1. selects a component of the mixture, see [LMollerR12] Section 2.4.1

• Step 2. generates a sample from the projection DPP(�̃�), cf. previous section.

Attention: Contrary to projection DPPs, the general case requires the eigendecomposition of the kernel (3.31).

See also:

Spectral method for sampling finite DPPs.

Perfect sampling

[DFL13] uses Coupling From The Past (CFTP).

Approximate sampling

See also:

• Approximation of 𝐾(𝑥, 𝑦) = 𝐾(𝑥− 𝑦) by Fourier series [LMollerR12] Section 4

3.2.4 𝛽-Ensembles

Definition

Let 𝛽 > 0, the joint distribution of the 𝛽-Ensemble associated to the reference measure 𝜇 writes

(𝑥1, . . . , 𝑥𝑁 ) ∼ 1

𝑍𝑁,𝛽
|∆(𝑥1, . . . , 𝑥𝑁 )|𝛽

𝑁∏︁
𝑖=1

𝜇(𝑑𝑥𝑖). (3.32)

Hint:

• |∆(𝑥1, . . . , 𝑥𝑁 )| =
∏︀

𝑖<𝑗 |𝑥𝑖 − 𝑥𝑗 | is the absolute value of the determinant of the Vandermonde matrix,
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∆(𝑥1, . . . , 𝑥𝑁 ) = det

⎡⎢⎢⎢⎣
1 . . . 1
𝑥1 . . . 𝑥𝑁
...

...
𝑥𝑁−1
1 𝑥𝑁−1

𝑁

⎤⎥⎥⎥⎦ , (3.33)

encoding the repulsive interaction. The closer the points are the lower the density.

• 𝛽 is the inverse temperature parameter quantifying the strength of the repulsion between the points.

Important: For Gaussian, Gamma and Beta reference measures, the 𝛽 = 1, 2 and 4 cases received a very special
attention in the random matrix literature, e.g. [DE02].

The associated ensembles actually correspond to the eigenvalues of random matrices whose distribution is invariant to
the action of the orthogonal (𝛽 = 1), unitary (𝛽 = 2) and symplectic (𝛽 = 4) group respectively.

𝜇 𝒩 Γ Beta
Ensemble name Hermite Laguerre Jacobi
support R R+ [0, 1]

Note: The study of the distribution of the eigenvalues of random orthogonal, unitary and symplectic matrices lying
on the unit circle is also very thorough [KN04].

Orthogonal Polynomial Ensembles

The case 𝛽 = 2 corresponds a specific type of projection DPPs also called Orthogonal Polynomial Ensembles (OPEs)
[Konig04] with associated kernel

𝐾𝑁 (𝑥, 𝑦) =

𝑁−1∑︁
𝑛=0

𝑃𝑛(𝑥)𝑃𝑛(𝑦),

where (𝑃𝑛) are the orthonormal polynomials w.r.t. 𝜇 i.e. deg(𝑃𝑛) = 𝑛 and ⟨𝑃𝑘, 𝑃𝑙⟩𝐿2(𝜇) = 𝛿𝑘𝑙.

Note: OPEs (with 𝑁 points) correspond to projection DPPs onto Span{𝑃𝑛}𝑁−1
𝑛=0 = R𝑁−1[𝑋]

Hint: First, linear combinations of the rows of ∆(𝑥1, . . . , 𝑥𝑁 ) allow to make appear the orthonormal polynomials
(𝑃𝑛) so that

|∆(𝑥1, . . . , 𝑥𝑁 )| ∝

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝑃0(𝑥1) . . . 𝑃0(𝑥𝑁 )
𝑃1(𝑥1) . . . 𝑃1(𝑥𝑁 )

...
...

𝑃𝑁−1(𝑥1) 𝑃𝑁−1(𝑥𝑁 )

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ .

Then,

|∆|2 = |∆⊤∆| ∝ det [𝐾𝑁 (𝑥𝑖, 𝑥𝑗)]
𝑁
𝑖,𝑗=1 .
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Finally, the joint distribution of (𝑥1, . . . , 𝑥𝑁 ) reads

(𝑥1, . . . , 𝑥𝑁 ) ∼ 1

𝑁 !
det [𝐾𝑁 (𝑥𝑖, 𝑥𝑗)]

𝑁
𝑖,𝑗=1

𝑁∏︁
𝑖=1

𝜇(𝑑𝑥𝑖). (3.34)

See also:

[Konig04], [Joh06]

Sampling

Full matrix models

For specific reference measures the 𝛽 = 1, 2, 4 cases are very singular in the sense that the corresponding ensembles
coincide with the eigenvalues of random matrices.

This is a highway for sampling exactly such ensembles in 𝒪(𝑁3)!

Hermite Ensemble

Take for reference measure 𝜇 = 𝒩 (0, 2), the pdf of the corresponding 𝛽-Ensemble reads

(𝑥1, . . . , 𝑥𝑁 ) ∼ |∆(𝑥1, . . . , 𝑥𝑁 )|𝛽
𝑁∏︁
𝑖=1

𝑒−
1
2

𝑥2
𝑖
2 𝑑𝑥𝑖,

𝑤ℎ𝑒𝑟𝑒𝑓𝑟𝑜𝑚𝑡ℎ𝑒𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑖𝑛 : 𝑒𝑞 : ‘𝑒𝑞 : 𝑎𝑏𝑠𝑣𝑎𝑛𝑑𝑒𝑟𝑚𝑜𝑛𝑑𝑒𝑑𝑒𝑡‘𝑤𝑒ℎ𝑎𝑣𝑒 : 𝑚𝑎𝑡ℎ : ‘ |∆(𝑥1, . . . , 𝑥𝑁 )| =
∏︁
𝑖<𝑗

|𝑥𝑖 − 𝑥𝑗 |‘.

Hint: The Hermite ensemble (whose name comes from the fact that Hermite polynomials are orthogonal w.r.t the
Gaussian distribution) refers to the eigenvalue distribution of random matrices formed by i.i.d. Gaussian vectors.

• 𝛽 = 1

𝑋 ∼ 𝒩𝑁,𝑁 (0, 1) 𝐴 =
𝑋 +𝑋⊤

√
2

.

• 𝛽 = 2

𝑋 ∼ 𝒩𝑁,𝑁 (0, 1) + 𝑖 𝒩𝑁,𝑁 (0, 1) 𝐴 =
𝑋 +𝑋†

√
2

.

• 𝛽 = 4 {︃
𝑋 ∼ 𝒩𝑁,𝑀 (0, 1) + 𝑖 𝒩𝑁,𝑀 (0, 1)

𝑌 ∼ 𝒩𝑁,𝑀 (0, 1) + 𝑖 𝒩𝑁,𝑀 (0, 1)
𝐴 =

[︂
𝑋 𝑌

−𝑌 * 𝑋*

]︂
𝐴 =

𝑋 +𝑋†
√

2
.

Normalization
√
𝛽𝑁 to concentrate as the semi-circle law.

√
4 − 𝑥2

2𝜋
1[−2,2]𝑑𝑥.
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from dppy.beta_ensembles import HermiteEnsemble

hermite = HermiteEnsemble(beta=4) # beta in {0,1,2,4}, default beta=2
hermite.sample_full_model(size_N=500)
# hermite.plot(normalization=True)
hermite.hist(normalization=True)

# To compare with the sampling speed of the tridiagonal model simply use
# hermite.sample_banded_model(size_N=500)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Realization of 500 points of Hermite Ensemble with = 4

fsemi circle

hist

Fig. 3.5: Full matrix model for the Hermite ensemble

See also:

• Banded matrix model for Hermite ensemble

• HermiteEnsemble in API

3.2. Continuous DPPs 52



Laguerre Ensemble

Take for reference measure 𝜇 = Γ
(︁

𝛽
2 (𝑀 −𝑁 + 1), 2

)︁
= 𝜒2

𝛽(𝑀−𝑁+1), the pdf of the corresponding 𝛽-Ensemble
reads

(𝑥1, . . . , 𝑥𝑁 ) ∼ |∆(𝑥1, . . . , 𝑥𝑁 )|𝛽
𝑁∏︁
𝑖=1

𝑥
𝛽
2 (𝑀−𝑁+1)−1
𝑖 𝑒−

1
2𝑥𝑖 𝑑𝑥𝑖,

𝑤ℎ𝑒𝑟𝑒𝑓𝑟𝑜𝑚𝑡ℎ𝑒𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑖𝑛 : 𝑒𝑞 : ‘𝑒𝑞 : 𝑎𝑏𝑠𝑣𝑎𝑛𝑑𝑒𝑟𝑚𝑜𝑛𝑑𝑒𝑑𝑒𝑡‘𝑤𝑒ℎ𝑎𝑣𝑒 : 𝑚𝑎𝑡ℎ : ‘ |∆(𝑥1, . . . , 𝑥𝑁 )| =
∏︁
𝑖<𝑗

|𝑥𝑖 − 𝑥𝑗 |‘.

Hint: The Laguerre ensemble (whose name comes from the fact that Laguerre polynomials are orthogonal w.r.t the
Gamma distribution) refers to the eigenvalue distribution of empirical covariance matrices of i.i.d. Gaussian vectors.

• 𝛽 = 1

𝑋 ∼ 𝒩𝑁,𝑀 (0, 1) 𝐴 = 𝑋𝑋⊤.

• 𝛽 = 2

𝑋 ∼ 𝒩𝑁,𝑀 (0, 1) + 𝑖 𝒩𝑁,𝑀 (0, 1) 𝐴 = 𝑋𝑋†.

• 𝛽 = 4 {︃
𝑋 ∼ 𝒩𝑁,𝑀 (0, 1) + 𝑖 𝒩𝑁,𝑀 (0, 1)

𝑌 ∼ 𝒩𝑁,𝑀 (0, 1) + 𝑖 𝒩𝑁,𝑀 (0, 1)
𝐴 =

[︂
𝑋 𝑌

−𝑌 * 𝑋*

]︂
𝐴 = 𝐴𝐴†.

Normalization 𝛽𝑀 to concentrate as Marcenko-Pastur law.

1

2𝜋

√︀
(𝜆+ − 𝑥)(𝑥− 𝜆−)

𝑐𝑥
1[𝜆−,𝜆+]𝑑𝑥,

where

𝑐 =
𝑀

𝑁
and 𝜆± = (1 ±

√
𝑐)2.

from dppy.beta_ensembles import LaguerreEnsemble

laguerre = LaguerreEnsemble(beta=1) # beta in {0,1,2,4}, default beta=2
laguerre.sample_full_model(size_N=500, size_M=800) # M >= N
# laguerre.plot(normalization=True)
laguerre.hist(normalization=True)

# To compare with the sampling speed of the tridiagonal model simply use
# laguerre.sample_banded_model(size_N=500, size_M=800)

See also:

• Banded matrix model for Laguerre ensemble

• LaguerreEnsemble in API
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Fig. 3.6: Full matrix model for the Laguerre ensemble
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Jacobi Ensemble

Take for reference measure 𝜇 = Beta
(︁

𝛽
2 (𝑀1 −𝑁 + 1), 𝛽2 (𝑀2 −𝑁 + 1)

)︁
, the pdf of the corresponding 𝛽-Ensemble

reads

(𝑥1, . . . , 𝑥𝑁 ) ∼ |∆(𝑥1, . . . , 𝑥𝑁 )|𝛽
𝑁∏︁
𝑖=1

𝑥
𝛽
2 (𝑀1−𝑁+1)−1
𝑖 (1 − 𝑥𝑖)

𝛽
2 (𝑀2−𝑁+1)−1 𝑑𝑥𝑖,

𝑤ℎ𝑒𝑟𝑒𝑓𝑟𝑜𝑚𝑡ℎ𝑒𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑖𝑛 : 𝑒𝑞 : ‘𝑒𝑞 : 𝑎𝑏𝑠𝑣𝑎𝑛𝑑𝑒𝑟𝑚𝑜𝑛𝑑𝑒𝑑𝑒𝑡‘𝑤𝑒ℎ𝑎𝑣𝑒 : 𝑚𝑎𝑡ℎ : ‘ |∆(𝑥1, . . . , 𝑥𝑁 )| =
∏︁
𝑖<𝑗

|𝑥𝑖 − 𝑥𝑗 |‘.

Hint: The Jacobi ensemble (whose name comes from the fact that Jacobi polynomials are orthogonal w.r.t the Beta
distribution) is associated with the multivariate analysis of variance (MANOVA) model.

• 𝛽 = 1 {︃
𝑋 ∼ 𝒩𝑁,𝑀1

(0, 1)

𝑌 ∼ 𝒩𝑁,𝑀2
(0, 1)

𝐴 = 𝑋𝑋⊤ (︀𝑋𝑋⊤ + 𝑌 𝑌 ⊤)︀−1
.

• 𝛽 = 2 {︃
𝑋 ∼ 𝒩𝑁,𝑀1(0, 1) + 𝑖 𝒩𝑁,𝑀1(0, 1)

𝑌 ∼ 𝒩𝑁,𝑀2
(0, 1) + 𝑖 𝒩𝑁,𝑀2

(0, 1)
𝐴 = 𝑋𝑋† (︀𝑋𝑋† + 𝑌 𝑌 †)︀−1

.

• 𝛽 = 4⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋1 ∼ 𝒩𝑁,𝑀1

(0, 1) + 𝑖 𝒩𝑁,𝑀1
(0, 1)

𝑋2 ∼ 𝒩𝑁,𝑀1(0, 1) + 𝑖 𝒩𝑁,𝑀1(0, 1)

𝑌1 ∼ 𝒩𝑁,𝑀2(0, 1) + 𝑖 𝒩𝑁,𝑀2(0, 1)

𝑌2 ∼ 𝒩𝑁,𝑀2
(0, 1) + 𝑖 𝒩𝑁,𝑀2

(0, 1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑋 =

[︃
𝑋1 𝑋2

−𝑋*
2 𝑋*

1

]︃

𝑌 =

[︃
𝑌1 𝑌2

−𝑌 *
2 𝑌 *

1

]︃ 𝐴 = 𝑋𝑋† (︀𝑋𝑋† + 𝑌 𝑌 †)︀−1
.

Concentrates as Wachter law

(𝑎+ 𝑏)
√︀

(𝜎+ − 𝑥)(𝑥− 𝜎−)

2𝜋𝑥(1 − 𝑥)
𝑑𝑥,

where

𝑎 =
𝑀1

𝑁
, 𝑏 =

𝑀2

𝑁
and 𝜎± =

(︃√︀
𝑎(𝑎+ 𝑏− 1) ±

√
𝑏

𝑎+ 𝑏

)︃2

,

itself tending to the arcsine law in the limit.

from dppy.beta_ensembles import JacobiEnsemble

jacobi = JacobiEnsemble(beta=2) # beta must be in {0,1,2,4}, default beta=2
jacobi.sample_full_model(size_N=400, size_M1=500, size_M2=600) # M_1, M_2 >= N
# jacobi.plot(normalization=True)
jacobi.hist(normalization=True)

# To compare with the sampling speed of the triadiagonal model simply use
# jacobi.sample_banded_model(size_N=400, size_M1=500, size_M2=600)

See also:
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Fig. 3.7: Full matrix model for the Jacobi ensemble
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• Banded matrix model for Jacobi ensemble

• JacobiEnsemble in API

• Multivariate Jacobi ensemble

• MultivariateJacobiOPE in API

Circular Ensemble

⃒⃒
∆(𝑒𝑖𝜃1 , . . . , 𝑒𝑖𝜃𝑁 )

⃒⃒𝛽 𝑁∏︁
𝑗=1

1

2𝜋
1[0,2𝜋](𝜃𝑗)𝑑𝜃𝑗 ,

𝑤ℎ𝑒𝑟𝑒𝑓𝑟𝑜𝑚𝑡ℎ𝑒𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑖𝑛 : 𝑒𝑞 : ‘𝑒𝑞 : 𝑎𝑏𝑠𝑣𝑎𝑛𝑑𝑒𝑟𝑚𝑜𝑛𝑑𝑒𝑑𝑒𝑡‘𝑤𝑒ℎ𝑎𝑣𝑒 : 𝑚𝑎𝑡ℎ : ‘ |∆(𝑥1, . . . , 𝑥𝑁 )| =
∏︁
𝑖<𝑗

|𝑥𝑖 − 𝑥𝑗 |‘.

Hint: Eigenvalues of orthogonal (resp. unitary and self-dual unitary) matrices drawn uniformly i.e. Haar measure on
the respective groups. The eigenvalues lie on the unit circle i.e. 𝜆𝑛 = 𝑒𝑖𝜃𝑛 . The distribution of the angles 𝜃𝑛 converges
to the uniform measure on [0, 2𝜋[ as 𝑁 grows.

• 𝛽 = 1

Uniform measure i.e. Haar measure on orthogonal matrices O𝑁 : 𝑈⊤𝑈 = 𝐼𝑁

1. Via QR algorithm, see [Mez06] Section 5

import numpy as np
from numpy.random import randn
import scipy.linalg as la

A = randn(N, N)
Q, R = la.qr(A)
d = np.diagonal(R)
U = np.multiply(Q, d/np.abs(d), Q)
la.eigvals(U)

2. The Hermite way

𝑋 ∼ 𝒩𝑁,𝑁 (0, 1)

𝐴 = 𝑋 +𝑋⊤ = 𝑈⊤Λ𝑈

𝑒𝑖𝑔𝑣𝑎𝑙𝑠(𝑈).

• 𝛽 = 2

Uniform measure i.e. Haar measure on unitary matrices U𝑁 : 𝑈†𝑈 = 𝐼𝑁

1. Via QR algorithm, see [Mez06] Section 5

import numpy as np
from numpy.random import randn
import scipy.linalg as la

A = randn(N, N) + 1j*randn(N, N)
Q, R = la.qr(A)

(continues on next page)
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(continued from previous page)

d = np.diagonal(R)
U = np.multiply(Q, d / np.abs(d), Q)
la.eigvals(U)

from dppy.beta_ensembles import CircularEnsemble

circular = CircularEnsemble(beta=2) # beta in {0,1,2,4}, default beta=2

# 1. Plot the eigenvalues, they lie on the unit circle
circular.sample_full_model(size_N=30, haar_mode='QR')
circular.plot()

# 2. Histogram of the angle of more points, should look uniform on [0,
→˓2pi]
circular.flush_samples() # Flush previous sample

circular.sample_full_model(size_N=1000, haar_mode='QR')
circular.hist()

1.0 0.5 0.0 0.5 1.0
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0.5

0.0

0.5

1.0

Realization of 30 points of Circular Ensemble with = 2
using full matrix model with haar_mode=QR

sample

Fig. 3.8: Full matrix model for the Circular ensemble from QR on random Gaussian matrix

2. The Hermite way
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Fig. 3.9: Full matrix model for the Circular ensemble from QR on random Gaussian matrix
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𝑋 ∼ 𝒩𝑁,𝑁 (0, 1) + 𝑖 𝒩𝑁,𝑁 (0, 1)

𝐴 = 𝑋 +𝑋† = 𝑈†Λ𝑈

𝑒𝑖𝑔𝑣𝑎𝑙𝑠(𝑈).

from dppy.beta_ensembles import CircularEnsemble

circular = CircularEnsemble(beta=2) # beta in {0,1,2,4}, default beta=2

# 1. Plot the eigenvalues, they lie on the unit circle
circular.sample_full_model(size_N=30, haar_mode='Hermite')
circular.plot()

# 2. Histogram of the angle of more points, should look uniform on [0,
→˓2pi]
circular.flush_samples() # Flush previous sample

circular.sample_full_model(size_N=1000, haar_mode='Hermite')
circular.hist()

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Realization of 30 points of Circular Ensemble with = 2
using full matrix model with haar_mode=Hermite

sample

Fig. 3.10: Full matrix model for the Circular ensemble from Hermite matrix

• 𝛽 = 4

Uniform measure i.e. Haar measure on self-dual unitary matrices U Sp2𝑁 : 𝑈†𝑈 = 𝐼2𝑁
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Fig. 3.11: Full matrix model for the Circular ensemble from Hermite matrix
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{︃
𝑋 ∼ 𝒩𝑁,𝑀 (0, 1) + 𝑖 𝒩𝑁,𝑀 (0, 1)

𝑌 ∼ 𝒩𝑁,𝑀 (0, 1) + 𝑖 𝒩𝑁,𝑀 (0, 1)

𝐴 =

[︂
𝑋 𝑌

−𝑌 * 𝑋*

]︂
𝐴 = 𝑋 +𝑋† = 𝑈†Λ𝑈

𝑒𝑖𝑔𝑣𝑎𝑙𝑠(𝑈).

See also:

• Banded matrix model for Circular ensemble

• CircularEnsemble in API

Ginibre Ensemble

|∆(𝑧1, . . . , 𝑧𝑁 )|2
𝑁∏︁
𝑖=1

𝑒−
1
2 |𝑧𝑖|

2

𝑑𝑧𝑖,

where from the definition in (3.33) we have |∆(𝑥1, . . . , 𝑥𝑁 )| =
∏︀

𝑖<𝑗 |𝑥𝑖 − 𝑥𝑗 |.

𝐴 ∼ 1√
2

(𝒩𝑁,𝑁 (0, 1) + 𝑖 𝒩𝑁,𝑁 (0, 1)) .

Nomalization
√
𝑁 to concentrate in the unit circle.

from dppy.beta_ensembles import GinibreEnsemble

ginibre = GinibreEnsemble() # beta must be 2 (default)

ginibre.sample_full_model(size_N=40)
ginibre.plot(normalization=True)

ginibre.sample_full_model(size_N=1000)
ginibre.hist(normalization=True)

See also:

• GinibreEnsemble in API

Banded matrix models

Computing the eigenvalues of a full 𝑁 × 𝑁 random matrix is 𝒪(𝑁3), and can thus become prohibitive for large 𝑁 .
A way to circumvent the problem is to adopt the equivalent banded models i.e. diagonalize banded matrices.

The first tridiagonal models for the Hermite Ensemble and Laguerre Ensemble were revealed by [DE02], who left the
Jacobi Ensemble as an open question, addressed by [KN04]. Such tridiagonal formulations made sampling possible
at cost 𝒪(𝑁2) but also unlocked sampling for generic 𝛽 > 0!

Note that [KN04] also derived a quindiagonal model for the Circular Ensemble.

3.2. Continuous DPPs 62



1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Realization of 40 points of Ginibre Ensemble with = 2

Fig. 3.12: Full matrix model for the Ginibre ensemble
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Fig. 3.13: Full matrix model for the Ginibre ensemble
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Hermite Ensemble

Take for reference measure 𝜇 = 𝒩 (𝜇, 𝜎)

(𝑥1, . . . , 𝑥𝑁 ) ∼ |∆(𝑥1, . . . , 𝑥𝑁 )|𝛽
𝑁∏︁
𝑖=1

𝑒−
(𝑥𝑖−𝜇)2

2𝜎2 𝑑𝑥𝑖.

Note: Recall that from the definition in (3.33)

|∆(𝑥1, . . . , 𝑥𝑁 )| =
∏︁
𝑖<𝑗

|𝑥𝑖 − 𝑥𝑗 |.

The equivalent tridiagonal model reads⎡⎢⎢⎢⎢⎢⎣
𝛼1

√
𝛽2 0 0 0√

𝛽2 𝛼2

√
𝛽3 0 0

0
. . . . . . . . . 0

0 0
√︀
𝛽𝑁−1 𝛼𝑁−1

√
𝛽𝑁

0 0 0
√
𝛽𝑁 𝛼𝑁

⎤⎥⎥⎥⎥⎥⎦ ,

with

𝛼𝑖 ∼ 𝒩 (𝜇, 𝜎2) and 𝛽𝑖+1 ∼ Γ

(︂
𝛽

2
(𝑁 − 𝑖), 𝜎2

)︂
.

To recover the full matrix model for Hermite Ensemble, recall that Γ(𝑘
2 , 2) ≡ 𝜒2

𝑘 and take

𝜇 = 0 and 𝜎2 = 2.

That is to say,

𝛼𝑖 ∼ 𝒩 (0, 2) and 𝛽𝑖+1 ∼ 𝜒2
𝛽(𝑁−𝑖).

from dppy.beta_ensembles import HermiteEnsemble

hermite = HermiteEnsemble(beta=5.43) # beta can be >=0, default beta=2
# Reference measure is N(mu, sigma^2)
hermite.sample_banded_model(loc=0.0, scale=1.0, size_N=500)
# hermite.plot(normalization=True)
hermite.hist(normalization=True)

See also:

• [DE02] II-C

• Full matrix model for Hermite ensemble

• HermiteEnsemble in API
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Fig. 3.14: Tridiagonal matrix model for the Hermite ensemble
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Laguerre Ensemble

Take for reference measure 𝜇 = Γ(𝑘, 𝜃)

(𝑥1, . . . , 𝑥𝑁 ) ∼ |∆(𝑥1, . . . , 𝑥𝑁 )|𝛽
𝑁∏︁
𝑖=1

𝑥𝑘−1
𝑖 𝑒−

𝑥𝑖
𝜃 𝑑𝑥𝑖.

Note: Recall that from the definition in (3.33)

|∆(𝑥1, . . . , 𝑥𝑁 )| =
∏︁
𝑖<𝑗

|𝑥𝑖 − 𝑥𝑗 |.

The equivalent tridiagonal model reads⎡⎢⎢⎢⎢⎢⎣
𝛼1

√
𝛽2 0 0 0√

𝛽2 𝛼2

√
𝛽3 0 0

0
. . . . . . . . . 0

0 0
√︀
𝛽𝑁−1 𝛼𝑁−1

√
𝛽𝑁

0 0 0
√
𝛽𝑁 𝛼𝑁

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
√
𝜉1√
𝜉2

√
𝜉3

. . . . . .√︀
𝜉2𝑁−2

√︀
𝜉2𝑁−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
√
𝜉1

√
𝜉2

√
𝜉3

. . .

. . .
√︀
𝜉2𝑁−2√︀
𝜉2𝑁−1

⎤⎥⎥⎥⎥⎦ ,

with

𝜉2𝑖−1 ∼ Γ

(︂
𝛽

2
(𝑁 − 𝑖) + 𝑘, 𝜃

)︂
and 𝜉2𝑖 ∼ Γ

(︂
𝛽

2
(𝑁 − 𝑖), 𝜃

)︂
.

To recover the full matrix model for Laguerre Ensemble, recall that Γ(𝑘
2 , 2) ≡ 𝜒2

𝑘 and take

𝑘 =
𝛽

2
(𝑀 −𝑁 + 1) and 𝜃 = 2.

That is to say,

𝜉2𝑖−1 ∼ 𝜒2
𝛽(𝑀−𝑖+1) and 𝜉2𝑖 ∼ 𝜒2

𝛽(𝑁−𝑖).

from dppy.beta_ensembles import LaguerreEnsemble

laguerre = LaguerreEnsemble(beta=2.98) # beta can be >=0, default beta=2
# Reference measure is Gamma(k, theta)
laguerre.sample_banded_model(shape=600, scale=2.0, size_N=400)
# laguerre.plot(normalization=True)
laguerre.hist(normalization=True)

See also:

• [DE02] III-B

• Full matrix model for Laguerre ensemble

• LaguerreEnsemble in API
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Fig. 3.15: Tridiagonal matrix model for the Laguerre ensemble
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Jacobi Ensemble

Take for reference measure 𝜇 = Beta(𝑎, 𝑏)

(𝑥1, . . . , 𝑥𝑁 ) ∼ |∆(𝑥1, . . . , 𝑥𝑁 )|𝛽
𝑁∏︁
𝑖=1

𝑥𝑎−1
𝑖 (1 − 𝑥𝑖)

𝑏−1 𝑑𝑥𝑖.

Note: Recall that from the definition in (3.33)

|∆(𝑥1, . . . , 𝑥𝑁 )| =
∏︁
𝑖<𝑗

|𝑥𝑖 − 𝑥𝑗 |.

The equivalent tridiagonal model reads⎡⎢⎢⎢⎢⎢⎣
𝛼1

√
𝛽2 0 0 0√

𝛽2 𝛼2

√
𝛽3 0 0

0
. . . . . . . . . 0

0 0
√︀
𝛽𝑁−1 𝛼𝑁−1

√
𝛽𝑁

0 0 0
√
𝛽𝑁 𝛼𝑁

⎤⎥⎥⎥⎥⎥⎦ .

𝛼1 = 𝜉1

𝛼𝑘 = 𝜉2𝑘−2 + 𝜉2𝑘−1 𝛽𝑘+1 = 𝜉2𝑘−1𝜉2𝑘

𝜉1 = 𝑐1 𝛾1 = 1 − 𝑐1

𝜉𝑘 = (1 − 𝑐𝑘−1)𝑐𝑘 𝛾𝑘 = 𝑐𝑘−1(1 − 𝑐𝑘)
,

with

𝑐2𝑖−1 ∼ Beta

(︂
𝛽

2
(𝑁 − 𝑖) + 𝑎,

𝛽

2
(𝑁 − 𝑖) + 𝑏

)︂
and 𝑐2𝑖 ∼ Beta

(︂
𝛽

2
(𝑁 − 𝑖),

𝛽

2
(𝑁 − 𝑖− 1) + 𝑎+ 𝑏

)︂
.

To recover the full matrix model for Laguerre Ensemble, recall that Γ(𝑘
2 , 2) ≡ 𝜒2

𝑘 and take

𝑎 =
𝛽

2
(𝑀1 −𝑁 + 1) and 𝑏 =

𝛽

2
(𝑀2 −𝑁 + 1).

That is to say,

𝑐2𝑖−1 ∼ Beta

(︂
𝛽

2
(𝑀1 − 𝑖+ 1),

𝛽

2
(𝑀2 − 𝑖+ 1)

)︂
and 𝑐2𝑖 ∼ Beta

(︂
𝛽

2
(𝑁 − 𝑖),

𝛽

2
(𝑀1 +𝑀2 −𝑁 − 𝑖+ 1)

)︂
.

from dppy.beta_ensembles import JacobiEnsemble

jacobi = JacobiEnsemble(beta=3.14) # beta can be >=0, default beta=2
# Reference measure is Beta(a,b)
jacobi.sample_banded_model(a=500, b=300, size_N=400)
# jacobi.plot(normalization=True)
jacobi.hist(normalization=True)

See also:

• [KN04] Theorem 2
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Fig. 3.16: Tridiagonal matrix model for the Jacobi ensemble
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• Full matrix model for Jacobi ensemble

• JacobiEnsemble in API

• Multivariate Jacobi ensemble

• MultivariateJacobiOPE in API

Circular Ensemble

⃒⃒
∆(𝑒𝑖𝜃1 , . . . , 𝑒𝑖𝜃𝑁 )

⃒⃒𝛽 𝑁∏︁
𝑗=1

1

2𝜋
1[0,2𝜋](𝜃𝑗)𝑑𝜃𝑗 .

Note: Recall that from the definition in (3.33)

|∆(𝑥1, . . . , 𝑥𝑁 )| =
∏︁
𝑖<𝑗

|𝑥𝑖 − 𝑥𝑗 |.

Important: Consider the distribution Θ𝜈 that for integers 𝜈 ≥ 2 is defined as follows:

Draw 𝑣 uniformly at random from the unit sphere S𝜈 ∈ R𝜈+1, then 𝑣1 + 𝑖𝑣2 ∼ Θ𝜈

Now, given 𝛽 ∈ N*, let

• 𝛼𝑘 ∼ Θ𝛽(𝑁−𝑘−1)+1 independent variables

• for 0 ≤ 𝑘 ≤ 𝑁 − 1 set 𝜌𝑘 =
√︀

1 − |𝛼𝑘|2.

Then, the equivalent quindiagonal model corresponds to the eigenvalues of either 𝐿𝑀 or 𝑀𝐿 with

𝐿 = diag[Ξ0,Ξ2, . . . ] and 𝑀 = diag[Ξ−1,Ξ1,Ξ3 . . . ],

and where

Ξ𝑘 =

[︂
𝛼𝑘 𝜌𝑘
𝜌𝑘 −𝛼𝑘

]︂
, 0 ≤ 𝑘 ≤ 𝑁 − 2, with Ξ−1 = [1] and Ξ𝑁−1 = [𝛼𝑁−1].

Hint: The effect of increasing the 𝛽 parameter can be nicely visualized on this Circular Ensemble. Viewing 𝛽 as the
inverse temperature, the configuration of the eigenvalues crystallizes with 𝛽, see the figure below.

from dppy.beta_ensembles import CircularEnsemble

circular = CircularEnsemble(beta=2) # beta must be >=0 integer, default beta=2

# See the cristallization of the configuration as beta increases
for b in [0, 1, 5, 10]:

circular.beta = b
circular.sample_banded_model(size_N=30)
circular.plot()

(continues on next page)
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(continued from previous page)

circular.beta = 2
circular.sample_banded_model(size_N=1000)
circular.hist()

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Realization of 30 points of Circular Ensemble with = 0
using i.i.d samples from [0, 2 ]

sample

Fig. 3.17: Quindiagonal matrix model for the Circular ensemble

See also:

• [KN04] Theorem 1

• Full matrix model for Circular ensemble

• CircularEnsemble in API
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Realization of 30 points of Circular Ensemble with = 1
using quindiag model

sample

Fig. 3.18: Quindiagonal matrix model for the Circular ensemble
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Realization of 30 points of Circular Ensemble with = 5
using quindiag model

sample

Fig. 3.19: Quindiagonal matrix model for the Circular ensemble
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Realization of 30 points of Circular Ensemble with = 10
using quindiag model

sample

Fig. 3.20: Quindiagonal matrix model for the Circular ensemble
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Fig. 3.21: Quindiagonal matrix model for the Circular ensemble
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3.2.5 Multivariate Jacobi ensemble

Important: For the details please refer to:

a) the extensive documentation of MultivariateJacobiOPE below

b) the associated Jupyter notebook which showcases MultivariateJacobiOPE

c) our NeurIPS‘19 paper [GBV19] On two ways to use determinantal point processes for Monte Carlo integration

d) our ICML‘19 workshop paper

The figures below display a sample of a 𝑑 = 2 dimensional Jacobi ensemble MultivariateJacobiOPE with
𝑁 = 200 points. The red and green dashed curves correspond to the normalized base densities proportional to
(1 − 𝑥)𝑎1(1 + 𝑥)𝑏1 and (1 − 𝑦)𝑎2(1 + 𝑦)𝑏2 , respectively.

import numpy as np
import matplotlib.pyplot as plt
from dppy.multivariate_jacobi_ope import MultivariateJacobiOPE

# The .plot() method outputs smtg only in dimension d=1 or 2

# Number of points / dimension
N, d = 200, 2
# Jacobi parameters in [-0.5, 0.5]^{d x 2}
jac_params = np.array([[0.5, 0.5],

[-0.3, 0.4]])

dpp = MultivariateJacobiOPE(N, jac_params)

# Get an exact sample
sampl = dpp.sample()

# Display
# the cloud of points
# the base probability densities
# the marginal empirical histograms
dpp.plot(sample=sampl, weighted=False)
plt.tight_layout()

dpp.plot(sample=sampl, weighted='BH')
plt.tight_layout()

dpp.plot(sample=sampl, weighted='EZ')
plt.tight_layout()

• In the first plot, observe that the empirical marginal density converges to the arcsine density 1
𝜋
√
1−𝑥2

, displayed
in orange.

• In the second plot, we take the same sample and attach a weight 1
𝐾(𝑥,𝑥) to each of the points. This illustrates the

choice of the weights defining the estimator of [BH16] as a proxy for the reference measure.

Implementation of the class MultivariateJacobiOPE used in [GBV19] for Monte Carlo with Determinantal
Point Processes

It has 3 main methods:
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• sample() to generate samples

• K() to evaluate the corresponding projection kernel

• plot() to display 1D or 2D samples

class dppy.multivariate_jacobi_ope.MultivariateJacobiOPE(N, jacobi_params)
Bases: object

Multivariate Jacobi Orthogonal Polynomial Ensemble used in [GBV19] for Monte Carlo with Determinantal
Point Processes

This corresponds to a continuous multivariate projection DPP with state space [−1, 1]𝑑 with respect to
• reference measure 𝜇(𝑑𝑥) = 𝑤(𝑥)𝑑𝑥 (see also eval_w()), where

𝑤(𝑥) =

𝑑∏︁
𝑖=1

(1 − 𝑥𝑖)
𝑎𝑖(1 + 𝑥𝑖)

𝑏𝑖

• kernel 𝐾 (see also K())

𝐾(𝑥, 𝑦) =

𝑁−1∑︁
b(𝑘)=0

𝑃𝑘(𝑥)𝑃𝑘(𝑦) = Φ(𝑥)⊤Φ(𝑦)

where

– 𝑘 ∈ N𝑑 is a multi-index ordered according to the ordering b (see
compute_ordering())

– 𝑃𝑘(𝑥) =
∏︀𝑑

𝑖=1 𝑃
(𝑎𝑖,𝑏𝑖)
𝑘𝑖

(𝑥𝑖) is the product of orthonormal Jacobi polynomials

∫︁ 1

−1

𝑃
(𝑎𝑖,𝑏𝑖)
𝑘 (𝑢)𝑃

(𝑎𝑖,𝑏𝑖)
ℓ (𝑢)(1 − 𝑢)𝑎𝑖(1 + 𝑢)𝑏𝑖𝑑𝑢 = 𝛿𝑘ℓ

so that (𝑃𝑘) are orthonormal w.r.t 𝜇(𝑑𝑥)
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– Φ(𝑥) =
(︀
𝑃b−1(0)(𝑥), . . . , 𝑃b−1(𝑁−1)(𝑥)

)︀⊤
Parameters

• N (int) – Number of points 𝑁 ≥ 1

• jacobi_params (array_like) – Jacobi parameters [(𝑎𝑖, 𝑏𝑖)]
𝑑
𝑖=1 The number of

rows 𝑑 prescribes the ambient dimension of the points i.e. 𝑥1, . . . , 𝑥𝑁 ∈ [−1, 1]𝑑. -
when 𝑑 = 1, 𝑎1, 𝑏1 > −1 - when 𝑑 ≥ 2, |𝑎𝑖|, |𝑏𝑖| ≤ 1

2

See also:

• Multivariate Jacobi ensemble
• when 𝑑 = 1, the univariate Jacobi ensemble is sampled by computing the eigenvalues of a properly

randomized tridiagonal matrix of [KN04]
• [BH16] initiated the use of the multivariate Jacobi ensemble for Monte Carlo integration. In particular,

they proved CLT with variance decay of order 𝑁−(1+1/𝑑) which is faster that the 𝑁−1 rate of vanilla
Monte Carlo where the points are drawn i.i.d. from the base measure.

K(X, Y=None, eval_pointwise=False)
Evalute (𝐾(𝑥, 𝑦))𝑥∈𝑋,𝑦∈𝑌 if eval_pointwise=False or (𝐾(𝑥, 𝑦))(𝑥,𝑦)∈(𝑋,𝑌 ) otherwise

𝐾(𝑥, 𝑦) =

𝑁−1∑︁
b(𝑘)=0

𝑃𝑘(𝑥)𝑃𝑘(𝑦) = 𝜑(𝑥)⊤𝜑(𝑦)

where

• 𝑘 ∈ N𝑑 is a multi-index ordered according to the ordering b, compute_ordering()

• 𝑃𝑘(𝑥) =
∏︀𝑑

𝑖=1 𝑃
(𝑎𝑖,𝑏𝑖)
𝑘𝑖

(𝑥𝑖) is the product of orthonormal Jacobi polynomials

∫︁ 1

−1

𝑃
(𝑎𝑖,𝑏𝑖)
𝑘 (𝑢)𝑃

(𝑎𝑖,𝑏𝑖)
ℓ (𝑢)(1 − 𝑢)𝑎𝑖(1 + 𝑢)𝑏𝑖𝑑𝑢 = 𝛿𝑘ℓ

so that (𝑃𝑘) are orthonormal w.r.t 𝜇(𝑑𝑥)

• Φ(𝑥) =
(︀
𝑃b−1(0)(𝑥), . . . , 𝑃b−1(𝑁−1)(𝑥)

)︀
, see eval_multiD_polynomials()

Parameters

• X (array_like) – 𝑀 × 𝑑 array of 𝑀 points ∈ [−1, 1]𝑑

• Y (array_like (default None)) – 𝑀 ′ × 𝑑 array of 𝑀 ′ points ∈ [−1, 1]𝑑

• eval_pointwise (bool (default False)) – sets pointwise evaluation
of the kernel, if True, 𝑋 and 𝑌 must have the same shape, see Returns

Returns

If eval_pointwise=False (default), evaluate the kernel matrix

(𝐾(𝑥, 𝑦))𝑥∈𝑋,𝑦∈𝑌

If eval_pointwise=True kernel matrix Pointwise evaluation of 𝐾 as depicted in
the following pseudo code output

• if Y is None

– (𝐾(𝑥, 𝑦))𝑥∈𝑋,𝑦∈𝑋 if eval_pointwise=False

– (𝐾(𝑥, 𝑥))𝑥∈𝑋 if eval_pointwise=True

3.2. Continuous DPPs 80



• otherwise

– (𝐾(𝑥, 𝑦))𝑥∈𝑋,𝑦∈𝑌 if eval_pointwise=False

– (𝐾(𝑥, 𝑦))(𝑥,𝑦)∈(𝑋,𝑌 ) if eval_pointwise=True (in this case X and Y
should have the same shape)

Return type array_like

See also:

eval_multiD_polynomials()

eval_multiD_polynomials(X)
Evaluate

Φ(𝑋) :=

⎛⎜⎝ Φ(𝑥1)⊤

...
Φ(𝑥𝑀 )⊤

⎞⎟⎠
where Φ(𝑥) =

(︀
𝑃b−1(0)(𝑥), . . . , 𝑃b−1(𝑁−1)(𝑥)

)︀⊤
such that 𝐾(𝑥, 𝑦) = Φ(𝑥)⊤Φ(𝑦). Recall that b de-

notes the ordering chosen to order multi-indices 𝑘 ∈ N𝑑.

This is done by evaluating each of the three-term recurrence relations satisfied by each univariate or-
thogonal Jacobi polynomial, using the dedicated see also SciPy scipy.special.eval_jacobi()
satistified by the respective univariate Jacobi polynomials 𝑃 (𝑎𝑖,𝑏𝑖)

𝑘𝑖
(𝑥𝑖). Then we use the slicing feature of

the Python language to compute Φ(𝑥) =
(︁
𝑃𝑘(𝑥) =

∏︀𝑑
𝑖=1 𝑃

(𝑎𝑖,𝑏𝑖)
𝑘𝑖

(𝑥𝑖)
)︁⊤
𝑘=b−1(0),...,b−1(𝑁−1)

Parameters X (array_like) – 𝑀 × 𝑑 array of 𝑀 points ∈ [−1, 1]𝑑

Returns Φ(𝑋) - 𝑀 ×𝑁 array

Return type array_like

See also:

• evaluation of the kernel K()

eval_w(X)
Evaluate𝑤(𝑥) =

∏︀𝑑
𝑖=1(1−𝑥𝑖)𝑎𝑖(1+𝑥𝑖)

𝑏𝑖 which corresponds to the density of the base measure 𝜇(𝑑𝑥) =
𝑤(𝑥)𝑑𝑥

Parameters X (array_like) – 𝑀 × 𝑑 array of 𝑀 points ∈ [−1, 1]𝑑

Returns 𝑤(𝑥) =
∏︀𝑑

𝑖=1(1 − 𝑥𝑖)
𝑎𝑖(1 + 𝑥𝑖)

𝑏𝑖

Return type array_like

sample(nb_trials_max=10000, random_state=None, tridiag_1D=True)
Use the chain rule [HKPVirag06] (Algorithm 18) to sample (𝑥1, . . . , 𝑥𝑁 ) with density

1

𝑁 !
(𝐾(𝑥𝑛, 𝑥𝑝))

𝑁
𝑛,𝑝=1

𝑁∏︁
𝑛=1

𝑤(𝑥𝑛)

=
1

𝑁
𝐾(𝑥1, 𝑥1)𝑤(𝑥1)

𝑁∏︁
𝑛=2

𝐾(𝑥𝑛, 𝑥𝑛) −𝐾(𝑥𝑛, 𝑥1:𝑛−1)
[︁
(𝐾(𝑥𝑘, 𝑥𝑙))

𝑛−1
𝑘,𝑙=1

]︁−1

𝐾(𝑥1:𝑛−1, 𝑥𝑛)

𝑁 − (𝑛− 1)
𝑤(𝑥𝑛)

=
‖Φ(𝑥)‖2

𝑁
𝜔(𝑥1)𝑑𝑥1

𝑁∏︁
𝑛=2

distance2(Φ(𝑥𝑛), span{Φ(𝑥𝑝)}𝑛−1
𝑝=1 )

𝑁 − (𝑛− 1)
𝜔(𝑥𝑛)𝑑𝑥𝑛
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The order in which the points were sampled can be forgotten to obtain a valid sample of the corresponding
DPP

• 𝑥1 ∼ 1
𝑁𝐾(𝑥, 𝑥)𝑤(𝑥) using sample_chain_rule_proposal()

• 𝑥𝑛|𝑌 = {𝑥1, . . . , 𝑥𝑛−1}, is sampled using rejection sampling with proposal density
1
𝑁𝐾(𝑥, 𝑥)𝑤(𝑥) and rejection bound frac{N}{N-(n-1)}

1

𝑁 − (𝑛− 1)
[𝐾(𝑥, 𝑥) −𝐾(𝑥, 𝑌 )𝐾−1

𝑌 𝐾(𝑌, 𝑥)]𝑤(𝑥) ≤ 𝑁

𝑁 − (𝑛− 1)

1

𝑁
𝐾(𝑥, 𝑥)𝑤(𝑥)

Note: Using the gram structure 𝐾(𝑥, 𝑦) = Φ(𝑥)⊤Φ(𝑦) the numerator of the successive conditionals
reads

𝐾(𝑥, 𝑥) −𝐾(𝑥, 𝑌 )𝐾(𝑌, 𝑌 )−1𝐾(𝑌, 𝑥) = distance2(Φ(𝑥𝑛), span{Φ(𝑥𝑝)}𝑛−1
𝑝=1 )

=
⃦⃦⃦

(𝐼 − Πspan{Φ(𝑥𝑝)}𝑛−1
𝑝=1

𝜑(𝑥)
⃦⃦⃦2

which can be computed simply in a vectorized way. The overall procedure is akin to a sequential Gram-
Schmidt orthogonalization of Φ(𝑥1), . . . ,Φ(𝑥𝑁 ).

See also:

• Projection DPPs: the chain rule

• sample_chain_rule_proposal()

sample_chain_rule_proposal(nb_trials_max=10000, random_state=None)
Use a rejection sampling mechanism to sample

1

𝑁
𝐾(𝑥, 𝑥)𝑤(𝑥)𝑑𝑥 =

1

𝑁

𝑁−1∑︁
b(𝑘)=0

(︂
𝑃𝑘(𝑥)

‖𝑃𝑘‖

)︂2

𝑤(𝑥)

with proposal distribution

𝑤𝑒𝑞(𝑥)𝑑𝑥 =

𝑑∏︁
𝑖=1

1

𝜋
√︀

1 − (𝑥𝑖)2
𝑑𝑥𝑖

Since the target density is a mixture, we can sample from it by

1. Select a multi-index 𝑘 uniformly at random in
{︀
b−1(0), . . . , b−1(𝑁 − 1)

}︀
2. Sample from

(︁
𝑃𝑘(𝑥)
‖𝑃𝑘‖

)︁2
𝑤(𝑥)𝑑𝑥 with proposal 𝑤𝑒𝑞(𝑥)𝑑𝑥.

The acceptance ratio writes(︁
𝑃𝑘(𝑥)
‖𝑃𝑘‖

)︁2
𝑤(𝑥)

𝑤𝑒𝑞(𝑥)
=

𝑑∏︁
𝑖=1

𝜋

⎛⎝𝑃 (𝑎𝑖,𝑏𝑖)
𝑘𝑖

(𝑥)⃦⃦⃦
𝑃

(𝑎𝑖,𝑏𝑖)
𝑘𝑖

⃦⃦⃦
⎞⎠2

(1 − 𝑥𝑖)
𝑎𝑖+

1
2 (1 + 𝑥𝑖)

𝑏𝑖+
1
2 ≤ 𝐶𝑘

which can be bounded using the result of [Gau09] on Jacobi polynomials.

Note: Each of the rejection constant 𝐶𝑘 is computed at initialization of the
MultivariateJacobiOPE object using compute_rejection_bounds()
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Returns A sample 𝑥 ∈ [−1, 1]𝑑 with probability distribution 1
𝑁𝐾(𝑥, 𝑥)𝑤(𝑥)

Return type array_like

See also:

• compute_rejection_bounds()

• sample()

dppy.multivariate_jacobi_ope.compute_degrees_1D_polynomials(max_degrees)
deg[i, j] = i if i <= max_degrees[j] else 0

dppy.multivariate_jacobi_ope.compute_norms_1D_polynomials(jacobi_params,
deg_max)

Compute the square norms ‖𝑃 (𝑎𝑖,𝑏𝑖)
𝑘 ‖2 of each (univariate) orthogoanl Jacobi polynomial for 𝑘 = 0 to deg_max

and 𝑎𝑖, 𝑏𝑖 = jacobi_params[i, :] Recall that the Jacobi polynomials
(︁
𝑃

(𝑎𝑖,𝑏𝑖)
𝑘

)︁
are orthogonal w.r.t.

(1 − 𝑢)𝑎𝑖(1 + 𝑢)𝑏𝑖𝑑𝑢.

‖𝑃 (𝑎𝑖,𝑏𝑖)
𝑘 ‖2 =

∫︁ 1

−1

(︁
𝑃

(𝑎𝑖,𝑏𝑖)
𝑘 (𝑢)

)︁2
(1 − 𝑢)𝑎𝑖(1 + 𝑢)𝑏𝑖𝑑𝑢

=
2𝑎𝑖+𝑏𝑖+1

2𝑘 + 𝑎𝑖 + 𝑏𝑖 + 1

Γ(𝑘 + 𝑎𝑖 + 1)Γ(𝑘 + 𝑏𝑖 + 1)

Γ(𝑘 + 𝑎𝑖 + 𝑏𝑖 + 1)𝑛!

Parameters

• jacobi_params (array_like) – Jacobi parameters [(𝑎𝑖, 𝑏𝑖)]
𝑑
𝑖=1 ∈ [− 1

2 ,
1
2 ]𝑑×2

The number of rows 𝑑 prescribes the ambient dimension of the points i.e. 𝑥1, . . . , 𝑥𝑁 ∈
[−1, 1]𝑑

• deg_max (int) – Maximal degree of 1D Jacobi polynomials

Returns Array of size deg_max + 1 ×𝑑 with entry 𝑘, 𝑖 given by ‖𝑃 (𝑎𝑖,𝑏𝑖)
𝑘 ‖2

Return type array_like
See also:

• Wikipedia Jacobi polynomials
• compute_ordering()

dppy.multivariate_jacobi_ope.compute_ordering(N, d)
Compute the ordering of the multi-indices ∈ N𝑑 defining the order between the multivariate monomials as
described in Section 2.1.3 of [BH16].

Parameters

• N (int) – Number of polynomials (𝑃𝑘) considered to build the kernel K() (number of
points of the corresponding MultivariateJacobiOPE)

• d (int) – Size of the multi-indices 𝑘 ∈ N𝑑 characterizing the _degree_ of 𝑃𝑘 (ambient
dimension of the points x_{1}, dots, x_{N} in [-1, 1]^d)

Returns Array of size 𝑁 × 𝑑 containing the first 𝑁 multi-indices ∈ N𝑑 in the order prescribed by
the ordering b [BH16] Section 2.1.3

Return type array_like
For instance, for 𝑁 = 12, 𝑑 = 2

[(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2), (0, 3),
→˓(1, 3), (2, 3)]
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See also:

• [BH16] Section 2.1.3

dppy.multivariate_jacobi_ope.compute_rejection_bounds(jacobi_params, ordering,
log_scale=True)

Compute the rejection constants for the acceptance/rejection mechanism used in
sample_chain_rule_proposal() to sample

1

𝑁
𝐾(𝑥, 𝑥)𝑤(𝑥)𝑑𝑥 =

1

𝑁

𝑁−1∑︁
b(𝑘)=0

(︂
𝑃𝑘(𝑥)

‖𝑃𝑘‖

)︂2

𝑤(𝑥)

with proposal distribution

𝑤𝑒𝑞(𝑥)𝑑𝑥 =

𝑑∏︁
𝑖=1

1

𝜋
√︀

1 − (𝑥𝑖)2
𝑑𝑥𝑖

To get a sample:
1. Draw a multi-index 𝑘 uniformly at random in

{︀
b−1(0), . . . , b−1(𝑁 − 1)

}︀
2. Sample from 𝑃𝑘(𝑥)2𝑤(𝑥)𝑑𝑥 with proposal 𝑤𝑒𝑞(𝑥)𝑑𝑥.

The acceptance ratio writes(︁
𝑃𝑘(𝑥)
‖𝑃𝑘‖

)︁2
𝑤(𝑥)

𝑤𝑒𝑞(𝑥)
=

𝑑∏︁
𝑖=1

𝜋

⎛⎝𝑃 (𝑎𝑖,𝑏𝑖)
𝑘𝑖

(𝑥)⃦⃦⃦
𝑃

(𝑎𝑖,𝑏𝑖)
𝑘𝑖

⃦⃦⃦
⎞⎠2

(1 − 𝑥𝑖)
𝑎𝑖+

1
2 (1 + 𝑥𝑖)

𝑏𝑖+
1
2 ≤ 𝐶𝑘

• For 𝑘𝑖 > 0 we use a result on Jacobi polynomials given by, e.g., [Gau09], for
|𝑎|, |𝑏| ≤ 1

2

𝜋(1 − 𝑢)𝑎+
1
2 (1 + 𝑢)𝑏+

1
2

⎛⎝𝑃 (𝑎,𝑏)
𝑛 (𝑢)⃦⃦⃦
𝑃

(𝑎,𝑏)
𝑛

⃦⃦⃦
⎞⎠2

≤ 2

𝑛!(𝑛+ (𝑎+ 𝑏+ 1)/2)2max(𝑎,𝑏)

Γ(𝑛+ 𝑎+ 𝑏+ 1)Γ(𝑛+ max(𝑎, 𝑏) + 1)

Γ(𝑛+ min(𝑎, 𝑏) + 1)

• For 𝑘𝑖 = 0, we use less involved properties of the Jacobi polynomials:

– 𝑃
(𝑎,𝑏)
0 = 1

– ‖𝑃 (𝑎,𝑏)
0 ‖2 = 2𝑎+𝑏+1 B(𝑎+ 1, 𝑏+ 1)

– 𝑚 = 𝑏−𝑎
𝑎+𝑏+1 is the mode of (1−𝑢)𝑎+

1
2 (1 +𝑢)𝑏+

1
2 (valid since 𝑎+ 1

2 , 𝑏+
1
2 > 0)

So that,

𝜋(1 − 𝑢)𝑎+
1
2 (1 + 𝑢)𝑏+

1
2

(︃
𝑃

(𝑎,𝑏)
0 (𝑢)

‖𝑃 (𝑎,𝑏)
0 ‖

)︃2

=
𝜋(1 − 𝑢)𝑎+

1
2 (1 + 𝑢)𝑏+

1
2

‖𝑃 (𝑎,𝑏)
0 ‖2

≤ 𝜋(1 −𝑚)𝑎+
1
2 (1 +𝑚)𝑏+

1
2

2𝑎+𝑏+1 B(𝑎+ 1, 𝑏+ 1)

Parameters

• jacobi_params (array_like) – Jacobi parameters [(𝑎𝑖, 𝑏𝑖)]
𝑑
𝑖=1 ∈ [− 1

2 ,
1
2 ]𝑑×2.

The number of rows 𝑑 prescribes the ambient dimension of the points i.e. 𝑥1, . . . , 𝑥𝑁 ∈
[−1, 1]𝑑
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• ordering (array_like) – Ordering of the multi-indices ∈ N𝑑 defining the order
between the multivariate monomials (see also compute_ordering())

– the number of rows corresponds to the number 𝑁 of monomials considered.

– the number of columns = 𝑑

• log_scale (bool) – If True, the rejection bound is computed using the logarithmic
versions betaln, gammaln of beta and gamma functions to avoid overflows

Returns The rejection bounds 𝐶𝑘 for 𝑘 = b−1(0), . . . , b−1(𝑁 − 1)

Return type array_like

See also:

• [Gau09] for the domination when 𝑘𝑖 > 0
• compute_poly1D_norms()

3.2.6 API

Implementation of the meta-class BetaEnsemble see 𝛽−Ensembles with children:

• HermiteEnsemble

• LaguerreEnsemble

• JacobiEnsemble

• CircularEnsemble

• GinibreEnsemble

Such objects have 4 main methods:

• sample_full_model()

• sample_banded_model()

• plot() to display a scatter plot of the last sample and eventually the limiting distribution (after normalization)

• hist() to display a histogram of the last sample and eventually the limiting distribution (after normalization)

class dppy.beta_ensembles.BetaEnsemble(beta=2)
Bases: object

𝛽-Ensemble object parametrized by
Parameters beta (int, float, default 2) – 𝛽 >= 0 inverse temperature parameter.

The default beta= 2 corresponds to the DPP case, see Orthogonal Polynomial Ensembles
See also:

• 𝛽-Ensembles definition

flush_samples()
Empty the list_of_samples attribute.

abstract hist()
Display histogram of the last realization of the underlying 𝛽-Ensemble. For some 𝛽-Ensembles, a nor-
malization argument is available to display the limiting (or equilibrium) distribution and scale the points
accordingly.

abstract normalize_points()
Normalize points ormalization argument is available to display the limiting (or equilibrium) distribution
and scale the points accordingly.
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abstract plot()
Display last realization of the underlying 𝛽-Ensemble. For some 𝛽-Ensembles, a normalization argument
is available to display the limiting (or equilibrium) distribution and scale the points accordingly.

abstract sample_banded_model()
Sample from underlying 𝛽-Ensemble using the corresponding banded matrix model. Arguments are the
associated reference measure’s parameters, or the matrix dimensions used in sample_full_model()

abstract sample_full_model()
Sample from underlying 𝛽-Ensemble using the corresponding full matrix model. Arguments are the
associated matrix dimensions

class dppy.beta_ensembles.CircularEnsemble(beta=2)
Bases: dppy.beta_ensembles.BetaEnsemble

Circular Ensemble object

See also:

• Full matrix model associated to the Circular ensemble
• Quindiagonal matrix model associated to the Circular ensemble

flush_samples()
Empty the list_of_samples attribute.

hist(normalization=True)
Display the histogram of the angles 𝜃1, . . . , 𝜃𝑁 associated to the last realization

{︀
𝑒𝑖𝜃1 , . . . , 𝑒𝑖𝜃𝑁

}︀
object.

Parameters normalization (bool, default True) – When True, the limiting distribu-
tion of the angles, i.e., the uniform distribution in [0, 2𝜋] is displayed

See also:

• sample_full_model(), sample_banded_model()

• plot()

• Full matrix model associated to the Circular ensemble

• Quindiagonal matrix model associated to the Circular ensemble

normalize_points(points)
No need to renormalize the points

plot(normalization=True)
Display the last realization of the CircularEnsemble object.

Parameters normalization (bool, default True) – When True, the unit circle is dis-
played

See also:

• sample_full_model(), sample_banded_model()

• hist()

• Full matrix model associated to the Circular ensemble

• Quindiagonal matrix model associated to the Circular ensemble

sample_banded_model(size_N=10, random_state=None)
Sample from Quindiagonal matrix model associated to the Circular Ensemble. Available for beta ∈ N*,
and the degenerate case beta = 0 corresponding to i.i.d. uniform points on the unit circle
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Parameters size_N (int, default 10) – Number 𝑁 of points, i.e., size of the matrix to be
diagonalized

Note: To compare sample_banded_model() with sample_full_model() simply use the
size_N parameter.

See also:

• Quindiagonal matrix model associated to the Circular ensemble

• sample_full_model()

sample_full_model(size_N=10, haar_mode='Hermite', random_state=None)
Sample from tridiagonal matrix model associated to the Circular ensemble. Only available for beta
∈ {1, 2, 4} and the degenerate case beta = 0 corresponding to i.i.d. uniform points on the unit circle

Parameters

• size_N (int, default 10) – Number 𝑁 of points, i.e., size of the matrix to be
diagonalized

• haar_mode (str, default 'hermite') – Sample Haar measure i.e. uni-
formly on the orthogonal/unitary/symplectic group using: - ‘QR’, - ‘Hermite’

See also:

• Full matrix model associated to the Circular ensemble

• sample_banded_model()

class dppy.beta_ensembles.GinibreEnsemble(beta=2)
Bases: dppy.beta_ensembles.BetaEnsemble

Ginibre Ensemble object

See also:

• Full matrix model associated to the Ginibre ensemble

flush_samples()
Empty the list_of_samples attribute.

hist(normalization=True)
Display the histogram of the radius of the points the last realization of the GinibreEnsemble object

Parameters normalization (bool, default True) – When True, the points are first
normalized so as to concentrate in the unit disk (see normalize_points()) and
the limiting density 2𝑟1[0,1](𝑟) of the radii is displayed

See also:

• normalize_points()

• sample_full_model()

• Full matrix model associated to the Ginibre ensemble ensemble

normalize_points(points)
Normalize points to concentrate in the unit disk.
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𝑥 ↦→ 𝑥√
𝑁

See also:

• plot()

• hist()

plot(normalization=True)
Display the last realization of the GinibreEnsemble object

Parameters normalization (bool, default True) – When True, the points are first
normalized so as to concentrate in the unit disk (see normalize_points()) and
the unit circle is displayed

See also:

• normalize_points()

• sample_full_model()

• Full matrix model associated to the Ginibre ensemble ensemble

sample_banded_model(*args, **kwargs)
No banded model is known for Ginibre, use sample_full_model()

sample_full_model(size_N=10, random_state=None)
Sample from full matrix model associated to the Ginibre ensemble. Only available for beta = 2

Parameters size_N (int, default 10) – Number 𝑁 of points, i.e., size of the matrix to be
diagonalized

See also:

• Full matrix model associated to the Ginibre ensemble

class dppy.beta_ensembles.HermiteEnsemble(beta=2)
Bases: dppy.beta_ensembles.BetaEnsemble

Hermite Ensemble object

See also:

• Full matrix model associated to the Hermite ensemble
• Tridiagonal matrix model associated to the Hermite ensemble

flush_samples()
Empty the list_of_samples attribute.

hist(normalization=True)
Display the histogram of the last realization of the HermiteEnsemble object.

Parameters normalization (bool, default True) – When True, the points are first
normalized (see normalize_points()) so that they concentrate as

• If beta = 0, the 𝒩 (0, 2) reference measure associated to full full matrix model

• If beta > 0, the limiting distribution, i.e., the semi-circle distribution

in both cases, the corresponding p.d.f. is displayed
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See also:

• sample_full_model(), sample_banded_model()

• normalize_points()

• plot()

• Full matrix model associated to the Hermite ensemble

• Tridiagonal matrix model associated to the Hermite ensemble

normalize_points(points)
Normalize points obtained after sampling to fit the limiting distribution, i.e., the semi-circle

𝑓(𝑥) =
1

2𝜋

√︀
4 − 𝑥2

Parameters points (array_like) – A sample from Hermite ensemble, accessible
through the list_of_samples attribute

• If sampled using sample_banded_model() with reference measure 𝒩 (𝜇, 𝜎2)

1. Normalize the points to fit the p.d.f. of 𝒩 (0, 2) reference measure of the full matrix model

𝑥 ↦→
√

2
𝑥− 𝜇

𝜎

2. If beta > 0, normalize the points to fit the semi-circle distribution

𝑥 ↦→ 𝑥

𝛽𝑁

Otherwise if beta = 0 do nothing more

• If sampled using sample_full_model(), apply 2. above

Note: This method is called in plot() and hist() when normalization=True

plot(normalization=True)
Display the last realization of the HermiteEnsemble object

Parameters normalization (bool, default True) – When True, the points are first
normalized (see normalize_points()) so that they concentrate as

• If beta = 0, the 𝒩 (0, 2) reference measure associated to full full matrix model

• If beta > 0, the limiting distribution, i.e., the semi-circle distribution

in both cases, the corresponding p.d.f. is displayed

See also:

• sample_full_model(), sample_banded_model()

• normalize_points()

• hist()
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• Full matrix model associated to the Hermite ensemble

• Tridiagonal matrix model associated to the Hermite ensemble

sample_banded_model(loc=0.0, scale=1.4142135623730951, size_N=10, random_state=None)
Sample from tridiagonal matrix model associated to the Hermite Ensemble. Available for beta > 0
and the degenerate case beta = 0 corresponding to i.i.d. points from the Gaussian 𝒩 (𝜇, 𝜎2) reference
measure

Parameters

• loc (float, default 0) – Mean 𝜇 of the Gaussian 𝒩 (𝜇, 𝜎2)

• scale (float, default
√

2) – Standard deviation 𝜎 of the Gaussian 𝒩 (𝜇, 𝜎2)

• size_N (int, default 10) – Number 𝑁 of points, i.e., size of the matrix to be
diagonalized

Note: The reference measure associated with the full matrix model is 𝒩 (0, 2). For this reason, in the
sampling_params attribute, the default values are set to loc= 0 and scale=

√
2.

To compare sample_banded_model() with sample_full_model() simply use the size_N
parameter.

See also:

• Tridiagonal matrix model associated to the Hermite ensemble

• [DE02] II-C

• sample_full_model()

sample_full_model(size_N=10, random_state=None)
Sample from full matrix model associated to the Hermite ensemble. Only available for beta ∈ {1, 2, 4}
and the degenerate case beta = 0 corresponding to i.i.d. points from the Gaussian 𝒩 (𝜇, 𝜎2) reference
measure

Parameters size_N (int, default 10) – Number 𝑁 of points, i.e., size of the matrix to be
diagonalized

Note: The reference measure associated with the full matrix model is 𝒩 (0, 2). For this reason, in the
sampling_params attribute, the values of the parameters are set to loc= 0 and scale=

√
2.

To compare sample_banded_model() with sample_full_model() simply use the size_N
parameter.

See also:

• Full matrix model associated to the Hermite ensemble

• sample_banded_model()

class dppy.beta_ensembles.JacobiEnsemble(beta=2)
Bases: dppy.beta_ensembles.BetaEnsemble

Jacobi Ensemble object

See also:
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• Full matrix model associated to the Jacobi ensemble
• Tridiagonal matrix model associated to the Jacobi ensemble

flush_samples()
Empty the list_of_samples attribute.

hist(normalization=True)
Display the histogram of the last realization of the JacobiEnsemble object.

Parameters normalization (bool, default True) – When True

• If beta = 0, display the p.d.f. of the Beta(𝑎, 𝑏)

• If beta > 0, display the limiting distribution, i.e., the Wachter distribution

See also:

• sample_full_model(), sample_banded_model()

• normalize_points()

• plot()

• Full matrix model associated to the Jacobi ensemble

• Tridiagonal matrix model associated to the Jacobi ensemble

normalize_points(points)
No need to renormalize the points

plot(normalization=True)
Display the last realization of the JacobiEnsemble object

Parameters normalization (bool, default True) – When True

• If beta = 0, display the p.d.f. of the Beta(𝑎, 𝑏)

• If beta > 0, display the limiting distribution, i.e., the Wachter distribution

See also:

• sample_full_model(), sample_banded_model()

• hist()

• Full matrix model associated to the Jacobi ensemble

• Tridiagonal matrix model associated to the Jacobi ensemble

sample_banded_model(a=1.0, b=2.0, size_N=10, size_M1=None, size_M2=None, ran-
dom_state=None)

Sample from tridiagonal matrix model associated to the Jacobi ensemble. Available for beta > 0 and
the degenerate case beta = 0 corresponding to i.i.d. points from the Beta(𝑎, 𝑏) reference measure

Parameters

• shape (float, default 1) – Shape parameter 𝑘 of Γ(𝑘, 𝜃) reference measure

• scale (float, default 2.0) – Scale parameter 𝜃 of Γ(𝑘, 𝜃) reference measure

• size_N (int, default 10) – Number 𝑁 of points, i.e., size of the matrix to be
diagonalized. Equivalent to the first dimension 𝑁 of the matrices used in the full
matrix model.

• size_M1 (int) – Equivalent to the second dimension 𝑀1 of the first matrix used
in the full matrix model.
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• size_M2 (int) – Equivalent to the second dimension 𝑀2 of the second matrix
used in the full matrix model.

Note: The reference measure associated with the full matrix model is :

Beta

(︂
𝛽

2
(𝑀1 −𝑁 + 1),

𝛽

2
(𝑀2 −𝑁 + 1)

)︂
For this reason, in the sampling_params attribute, the values of the parameters are set to a= 𝛽

2 (𝑀1−
𝑁 + 1) and b= 𝛽

2 (𝑀2 −𝑁 + 1).

To compare sample_banded_model() with sample_full_model() simply use the size_N,
size_M2 and size_M2 parameters.

• If size_M1 and size_M2 are not provided:

In the sampling_params attribute, size_M1,2 are set to size_M1= 2𝑎
𝛽 +𝑁 − 1

and size_M2= 2𝑏
𝛽 + 𝑁 − 1, to give an idea of the corresponding second dimensions

𝑀1,2.

• If size_M1 and size_M2 are provided:

In the sampling_params attribute, a and b are set to: a= 𝛽
2 (𝑀1 − 𝑁 + 1) and

b= 𝛽
2 (𝑀2 −𝑁 + 1).

See also:

• Tridiagonal matrix model associated to the Jacobi ensemble

• [KN04] Theorem 2

• sample_full_model()

sample_full_model(size_N=100, size_M1=150, size_M2=200, random_state=None)
Sample from full matrix model associated to the Jacobi ensemble. Only available for beta ∈ {1, 2, 4}
and the degenerate case beta = 0 corresponding to i.i.d. points from the Beta(𝑎, 𝑏) reference measure

Parameters

• size_N (int, default 100) – Number 𝑁 of points, i.e., size of the matrix to be
diagonalized. First dimension of the matrix used to form the covariance matrix to
be diagonalized, see full matrix model.

• size_M1 (int, default 150) – Second dimension 𝑀1 of the first matrix used to
form the matrix to be diagonalized, see full matrix model.

• size_M2 (int, default 200) – Second dimension 𝑀2 of the second matrix used to
form the matrix to be diagonalized, see full matrix model.

Note: The reference measure associated with the full matrix model is

Beta

(︂
𝛽

2
(𝑀1 −𝑁 + 1),

𝛽

2
(𝑀2 −𝑁 + 1)

)︂
For this reason, in the sampling_params attribute, the values of the parameters are set to a= 𝛽

2 (𝑀1−
𝑁 + 1) and b= 𝛽

2 (𝑀2 −𝑁 + 1).
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To compare sample_banded_model() with sample_full_model() simply use the size_N,
size_M2 and size_M2 parameters.

See also:

• Full matrix model associated to the Jacobi ensemble

• sample_banded_model()

class dppy.beta_ensembles.LaguerreEnsemble(beta=2)
Bases: dppy.beta_ensembles.BetaEnsemble

Laguerre Ensemble object

See also:

• Full matrix model associated to the Laguerre ensemble
• Tridiagonal matrix model associated to the Laguerre ensemble

flush_samples()
Empty the list_of_samples attribute.

hist(normalization=True)
Display the histogram of the last realization of the LaguerreEnsemble object.

Parameters normalization (bool, default True) – When True, the points are first
normalized (see normalize_points()) so that they concentrate as

• If beta = 0, the Γ(𝑘, 2) reference measure associated to full full matrix model

• If beta > 0, the limiting distribution, i.e., the Marcenko-Pastur distribution

in both cases the corresponding p.d.f. is displayed

See also:

• sample_full_model(), sample_banded_model()

• normalize_points()

• plot()

• Full matrix model associated to the Laguerre ensemble

• Tridiagonal matrix model associated to the Laguerre ensemble

normalize_points(points)
Normalize points obtained after sampling to fit the limiting distribution, i.e., the Marcenko-Pastur distri-
bution

1

2𝜋

√︀
(𝜆+ − 𝑥)(𝑥− 𝜆−)

𝑐𝑥
1[𝜆−,𝜆+]𝑑𝑥

where 𝑐 = 𝑀
𝑁 and 𝜆± = (1 ±

√
𝑐)2

Parameters points (array_like) – A sample from Laguerre ensemble, accessible
through the list_of_samples attribute

• If sampled using sample_banded_model() with reference measure Γ(𝑘, 𝜃)

𝑥 ↦→ 2𝑥

𝜃
and 𝑥 ↦→ 𝑥

𝛽𝑀
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• If sampled using sample_full_model()

𝑥 ↦→ 𝑥

𝛽𝑀

Note: This method is called in plot() and hist() when normalization=True.

plot(normalization=True)
Display the last realization of the LaguerreEnsemble object

Parameters normalization (bool, default True) – When True, the points are first
normalized (see normalize_points()) so that they concentrate as

• If beta = 0, the Γ(𝑘, 2) reference measure associated to full full matrix model

• If beta > 0, the limiting distribution, i.e., the Marcenko-Pastur distribution

in both cases the corresponding p.d.f. is displayed

See also:

• sample_full_model(), sample_banded_model()

• normalize_points()

• hist()

• Full matrix model associated to the Laguerre ensemble

• Tridiagonal matrix model associated to the Laguerre ensemble

sample_banded_model(shape=1.0, scale=2.0, size_N=10, size_M=None, random_state=None)
Sample from tridiagonal matrix model associated to the Laguerre ensemble. Available for beta > 0 and
the degenerate case beta = 0 corresponding to i.i.d. points from the Γ(𝑘, 𝜃) reference measure

Parameters

• shape (float, default 1) – Shape parameter 𝑘 of Γ(𝑘, 𝜃) reference measure

• scale (float, default 2.0) – Scale parameter 𝜃 of Γ(𝑘, 𝜃) reference measure

• size_N (int, default 10) – Number 𝑁 of points, i.e., size of the matrix to be
diagonalized. Equivalent to the first dimension 𝑁 of the matrix used to form the
covariance matrix in the full matrix model.

• size_M (int, default None) – Equivalent to the second dimension 𝑀 of
the matrix used to form the covariance matrix in the full matrix model.

• If size_M is not provided:

In the sampling_params, size_M is set to size_M= 2𝑘
𝛽 +𝑁 − 1, to give an idea

of the corresponding second dimension 𝑀 .

• If size_M is provided:

In the sampling_params, shape and scale are set to: shape= 1
2𝛽(𝑀 −𝑁 + 1)

and scale= 2
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Note: The reference measure associated with the full matrix model is Γ
(︁

𝛽
2 (𝑀 −𝑁 + 1), 2

)︁
. This

explains the role of the size_M parameter.

To compare sample_banded_model() with sample_full_model() simply use the size_N
and size_M parameters

See also:

• Tridiagonal matrix model associated to the Laguerre ensemble

• [DE02] III-B

• sample_full_model()

sample_full_model(size_N=10, size_M=100, random_state=None)
Sample from full matrix model associated to the Laguerre ensemble. Only available for beta ∈ {1, 2, 4}
and the degenerate case beta = 0 corresponding to i.i.d. points from the Γ(𝑘, 𝜃) reference measure

Parameters

• size_N (int, default 10) – Number 𝑁 of points, i.e., size of the matrix to be
diagonalized. First dimension of the matrix used to form the covariance matrix to
be diagonalized, see full matrix model.

• size_M (int, default 100) – Second dimension 𝑀 of the matrix used to form the
covariance matrix to be diagonalized, see full matrix model.

Note: The reference measure associated with the full matrix model is Γ
(︁

𝛽
2 (𝑀 −𝑁 + 1), 2

)︁
. For this

reason, in the sampling_params, the values of the parameters are set to shape= 𝛽
2 (𝑀 −𝑁 +1) and

scale= 2.

To compare sample_banded_model() with sample_full_model() simply use the size_N
and size_M parameters.

See also:

• Full matrix model associated to the Laguerre ensemble

• sample_banded_model()

3.3 Exotic DPPs

3.3.1 Uniform Spanning Trees

The Uniform measure on Spanning Trees (UST) of a directed connected graph corresponds to a projection DPP with
kernel the transfer current matrix of the graph. The later is actually the orthogonal projection matrix onto the row span
of the vertex-edge incidence matrix. In fact, one can discard any row of the vertex-edge incidence matrix - note 𝐴 the
resulting matrix - to compute K = 𝐴⊤[𝐴𝐴⊤]−1𝐴.

See also:

• UST

• Wilson algorithm [PW98]
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• Aldous-Broder [Ald90]

• [Lyo02]

Important: DPPy uses the networkx library to handle DPPs related to trees and graphs, but networkx is not
installed by default when installing DPPy. Please refer to the installation instructions on GitHub for more details on
how to install the necessary dependencies.

from networkx import Graph
from dppy.exotic_dpps import UST

# Build graph
g = Graph()
edges = [(0, 2), (0, 3), (1, 2), (1, 4), (2, 3), (2, 4), (3, 4)]
g.add_edges_from(edges)

# Initialize UST object
ust = UST(g)

# Display underlying kernel i.e. transfer current matrix
ust.plot_graph()

# Display underlying kernel i.e. transfer current matrix
ust.plot_kernel()

# Display some samples
for md in ('Wilson', 'Aldous-Broder', 'GS'):

ust.sample(md)
ust.plot()

3.3.2 Stationary 1-dependent process

A point process 𝒳 on Z (resp. N) is called 1-dependent if for any 𝐴,𝐵 ⊂ Z (resp. N), such as the distance between
𝐴 and 𝐵 is greater than 1,

P(𝐴 ∪𝐵 ⊂ 𝒳 ) = P(𝐴 ⊂ 𝒳 )P(𝐵 ⊂ 𝒳 ).

If 𝒳 is stationary and 1-dependent then 𝒳 forms a DPP.

The following 3 examples are stationary and 1-dependent process.
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Carries process

The sequence of carries appearing when computing the cumulative sum (in base 𝑏) of a sequence of i.i.d. digits forms
a DPP on N with non symmetric kernel.

from dppy.exotic_dpps import CarriesProcess

base = 10 # base
cp = CarriesProcess(base)

size = 100
cp.sample(size)

cp.plot(vs_bernoullis=True)

0 10 20 30 40 50 60 70 80 90 100

Realization of the Carries Process process vs independent Bernoulli variables with parameter p=0.450

Carries Process
Bernoullis

Fig. 3.22: Carries process

See also:

• CarriesProcess

• [BDF10]
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Descent process

The descent process obtained from a uniformly chosen permutation of {1, 2, . . . , 𝑛} forms a DPP on {1, 2, . . . , 𝑛−1}
with non symmetric kernel. It can be seen as the limit of the carries process as the base goes to infinity.

from dppy.exotic_dpps import DescentProcess

dp = DescentProcess()

size = 100
dp.sample(size)

dp.plot(vs_bernoullis=True)

0 10 20 30 40 50 60 70 80 90 100

Realization of the Descent Process process vs independent Bernoulli variables with parameter p=0.500

Descent Process
Bernoullis

Fig. 3.23: Descent process

See also:

• DescentProcess

• [BDF10]

Limiting Descent process for virtual permutations

For non uniform permutations the descent process is not necessarily determinantal but in the particular case of virtual
permutations with law stable under conjugation of the symmetric group the limiting descent process is a mixture of
determinantal point processes.

from dppy.exotic_dpps import VirtualDescentProcess

vdp = VirtualDescentProcess(x_0=0.5)

size = 100
vdp.sample(size)

vdp.plot(vs_bernoullis=True)

0 10 20 30 40 50 60 70 80 90 100

Realization of the Virtual Descent Process process vs independent Bernoulli variables with parameter p=0.375

Virtual Descent Process
Bernoullis

Fig. 3.24: Virtual descent process

See also:

• VirtualDescentProcess

• [Kam18]
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3.3.3 Poissonized Plancherel measure

The poissonized Plancherel measure is a measure on partitions 𝜆 = (𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0) ∈ NN*
. Samples from this

measure can be obtained in the following way

• Sample 𝑁 ∼ 𝒫(𝜃)

• Sample a uniform permutation 𝜎 ∈ S𝑁

• Compute the sorting tableau 𝑃 associated to the RSK (Robinson-Schensted-Knuth correspondence) applied to
𝜎

• Consider only the shape 𝜆 of 𝑃 .

Finally, the point process formed by {𝜆𝑖 − 𝑖+ 1
2}𝑖≥1 is a DPP on Z + 1

2 .

from dppy.exotic_dpps import PoissonizedPlancherel

theta = 500 # Poisson parameter
pp = PoissonizedPlancherel(theta=theta)
pp.sample()
pp.plot_diagram(normalization=True)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Young diagram associated to Poissonized Plancherel measure with parameter = 500
limit shape
sample

Fig. 3.25: Poissonized Plancherel measure

See also:

• PoissonizedPlancherel

• [Bor09] Section 6
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3.3.4 API

Implementation of exotic DPP objects:

• Uniform spanning trees UST

• Descent procresses Descent:

– CarriesProcess

– DescentProcess

– VirtualDescentProcess

• PoissonizedPlancherel measure

class dppy.exotic_dpps.CarriesProcess(base=10)
Bases: dppy.exotic_dpps.Descent

DPP on {1, . . . , 𝑁 − 1} (with a non symmetric kernel) derived from the cumulative sum of 𝑁 i.i.d. digits in
{0, . . . , 𝑏− 1}.

Parameters base (int, default 10) – Base/radix
See also:

• [BDF10]
• Carries process

flush_samples()
Empty the list_of_samples attribute.

plot(vs_bernoullis=True, random_state=None)
Display the last realization of the process. If vs_bernoullis=True compare it to a sequence of i.i.d.
Bernoullis with parameter _bernoulli_param

See also:

• sample()

sample(size=100, random_state=None)
Compute the cumulative sum (in base 𝑏) of a sequence of i.i.d. digits and record the position of carries.

Parameters size (int) – size of the sequence of i.i.d. digits in {0, . . . , 𝑏− 1}

class dppy.exotic_dpps.DescentProcess
Bases: dppy.exotic_dpps.Descent

DPP on {1, . . . , 𝑁 − 1} associated to the descent process on the symmetric group S𝑁 .

See also:

• [BDF10]
• Descent process

flush_samples()
Empty the list_of_samples attribute.

plot(vs_bernoullis=True, random_state=None)
Display the last realization of the process. If vs_bernoullis=True compare it to a sequence of i.i.d.
Bernoullis with parameter _bernoulli_param

See also:

• sample()
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sample(size=100, random_state=None)
Draw a permutation 𝜎 ∈ S𝑁 uniformly at random and record the descents i.e. {𝑖 ; 𝜎𝑖 > 𝜎𝑖+1}.

Parameters size (int) – size of the permutation i.e. degree 𝑁 of S𝑁 .

class dppy.exotic_dpps.PoissonizedPlancherel(theta=10)
Bases: object

DPP on partitions associated to the Poissonized Plancherel measure
Parameters theta (int, default 10) – Poisson parameter i.e. expected length of permu-

tation
See also:

• [Bor09] Section 6
• Poissonized Plancherel measure

plot(title='')
Display the process on the real line

Parameters title (string) – Plot title

See also:

• sample()

plot_diagram(normalization=False)
Display the Young diagram (russian convention), the associated sample and potentially rescale the two to
visualize the limit-shape theorem [Ker96]. The sample corresponds to the projection onto the real line of
the descending surface edges.

Parameters normalization (bool, default False) – If
normalization=True, the Young diagram and the corresponding sample are
scaled by a factor

√
𝜃 and the limiting

See also:

• sample()

• plot()

• [Ker96]

sample(random_state=None)
Sample from the Poissonized Plancherel measure.

Parameters random_state (None, np.random, int, np.random.
RandomState) –

class dppy.exotic_dpps.UST(graph)
Bases: object

DPP on edges of a connected graph 𝐺 with correlation kernel the projection kernel onto the span of the rows of
the incidence matrix Inc of 𝐺.

This DPP corresponds to the uniform measure on spanning trees (UST) of 𝐺.
Parameters graph (networkx graph) – Connected undirected graph

See also:

• Uniform Spanning Trees
• Definition of DPP
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compute_kernel()
Compute the orthogonal projection kernel K = Inc+Inc i.e. onto the span of the rows of the vertex-edge
incidence matrix Inc of size |𝑉 | × |𝐸|.

In fact, for a connected graph, Inc has rank |𝑉 | − 1 and any row can be discarded to get an basis of row
space. If we note 𝐴 the amputated version of Inc, then Inc+ = 𝐴⊤[𝐴𝐴⊤]−1.

In practice, we orthogonalize the rows of 𝐴 to get the eigenvectors 𝑈 of K = 𝑈𝑈⊤.

See also:

• plot_kernel()

compute_kernel_eig_vecs()
See explaination in compute_kernel

flush_samples()
Empty the list_of_samples attribute.

plot(title='')
Display the last realization (spanning tree) of the corresponding UST object.

Parameters title (string) – Plot title

See also:

• sample()

plot_graph(title='')
Display the original graph defining the UST object

Parameters title (string) – Plot title

See also:

• compute_kernel

plot_kernel(title='')
Display a heatmap of the underlying orthogonal projection kernel K associated to the DPP underlying the
UST object

Parameters title (string) – Plot title

See also:

• compute_kernel

sample(mode='Wilson', root=None, random_state=None)
Sample a spanning of the underlying graph uniformly at random. It generates a networkx graph object.

Parameters

• mode (string, default 'Wilson') – Markov-chain-based samplers:

– 'Wilson', 'Aldous-Broder'

Chain-rule-based samplers:

– 'GS', 'GS_bis', 'KuTa12' from eigenvectors

– 'Schur', 'Chol', from K correlation kernel
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• root (int) – Starting node of the random walk when using Markov-chain-based
samplers

• random_state (None, np.random, int, np.random.
RandomState) –

See also:

• Wilson [PW98]

• Aldous-Broder [Ald90]

• sample()

class dppy.exotic_dpps.VirtualDescentProcess(x_0=0.5)
Bases: dppy.exotic_dpps.Descent

This is a DPP on {1, . . . , 𝑁 − 1} with a non symmetric kernel appearing in (or as a limit of) the descent process
on the symmetric group S𝑁 .

See also:

• [Kam18]
• Limiting Descent process for virtual permutations
• DescentProcess

flush_samples()
Empty the list_of_samples attribute.

plot(vs_bernoullis=True, random_state=None)
Display the last realization of the process. If vs_bernoullis=True compare it to a sequence of i.i.d.
Bernoullis with parameter _bernoulli_param

See also:

• sample()

sample(size=100, random_state=None)
Draw a permutation uniformly at random and record the descents i.e. indices where 𝜎(𝑖+ 1) < 𝜎(𝑖) and
something else. . .

Parameters size (int) – size of the permutation i.e. degree 𝑁 of S𝑁 .

See also:

• [Kam18], Sec ??

Todo: ask @kammmoun to complete the docsting and Section in see also
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[DerezinskiCV19] Michal Dereziński, Daniele Calandriello, and Michal Valko. Exact sampling of determinantal
point processes with sublinear time preprocessing. In Advances in Neural Information Processing Sys-
tems. 2019.

[DE15] Alexander Dubbs and Alan Edelman. Infinite Random Matrix Theory, Tridiagonal Bordered Toeplitz
Matrices, and the Moment Problem. Linear Algebra and its Applications, 467:188–201, 2015.
arXiv:1502.04931, doi:10.1016/j.laa.2014.11.006.

[DE02] Ioana Dumitriu and Alan Edelman. Matrix Models for Beta Ensembles. Journal of Mathematical
Physics, 43(11):5830–5847, 2002. URL: https://sites.math.washington.edu/\protect\T1\textbraceleft~\
protect\T1\textbracerightdumitriu/JMathPhys\protect\T1\textbraceleft\T1\textbackslash{}_\protect\
T1\textbraceright43\protect\T1\textbraceleft\T1\textbackslash{}_\protect\T1\textbraceright5830.pdf,
arXiv:0206043, doi:10.1063/1.1507823.

[DB18] Christophe Dupuy and Francis Bach. Learning Determinantal Point Processes in Sublinear Time. In Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), volume 84, 244–257. Lanzarote,
Spain, 2018. PMLR. URL: http://proceedings.mlr.press/v84/dupuy18a, arXiv:1610.05925.

[GBDK19] Mike Gartrell, Victor-Emmanuel Brunel, Elvis Dohmatob, and Syrine Krichene. Learning Nonsym-
metric Determinantal Point Processes. ArXiv e-prints, may 2019. URL: http://arxiv.org/abs/1905.12962,
arXiv:1905.12962.

[GPK16] Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. Low-Rank Factorization of Determinantal Point
Processes for Recommendation. In AAAI Conference on Artificial Intelligence, 1912–1918. 2016. URL:
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14657/14354, arXiv:1602.05436.

[GBV17] Guillaume Gautier, Rémi Bardenet, and Michal Valko. Zonotope hit-and-run for efficient sampling from
projection DPPs. International Conference on Machine Learning (ICML), pages 1223–1232, may 2017.
URL: http://proceedings.mlr.press/v70/gautier17a, arXiv:1705.10498.

[GBV19] Guillaume Gautier, Rémi Bardenet, and Michal Valko. On two ways to use determinantal point processes
for Monte Carlo integration. In Neural Information Processing Systems (NeurIPS). 2019. URL:.

[GPBV19] Guillaume Gautier, Guillermo Polito, Rémi Bardenet, and Michal Valko. DPPy: DPP Sampling with
Python. Journal of Machine Learning Research - Machine Learning Open Source Software (JMLR-
MLOSS), in press, 2019.

[Gau09] Walter Gautschi. How sharp is Bernstein’s Inequality for Jacobi polynomials? Electronic Transactions
on Numerical Analysis, 36:1–8, 2009. URL: http://emis.ams.org/journals/ETNA/vol.36.2009-2010/pp1-8.
dir/pp1-8.pdf.

Bibliography 108

http://link.springer.com/10.1007/b97277
https://doi.org/10.1007/b97277
http://arxiv.org/abs/1311.1027
https://arxiv.org/abs/1311.1027
http://papers.nips.cc/paper/7517-leveraged-volume-sampling-for-linear-regression.pdf
http://proceedings.mlr.press/v99/derezinski19a.html
https://arxiv.org/abs/1502.04931
https://doi.org/10.1016/j.laa.2014.11.006
https://sites.math.washington.edu/\protect \T1\textbraceleft ~\protect \T1\textbraceright dumitriu/JMathPhys\protect \T1\textbraceleft \T1\textbackslash {}_\protect \T1\textbraceright 43\protect \T1\textbraceleft \T1\textbackslash {}_\protect \T1\textbraceright 5830.pdf
https://sites.math.washington.edu/\protect \T1\textbraceleft ~\protect \T1\textbraceright dumitriu/JMathPhys\protect \T1\textbraceleft \T1\textbackslash {}_\protect \T1\textbraceright 43\protect \T1\textbraceleft \T1\textbackslash {}_\protect \T1\textbraceright 5830.pdf
https://sites.math.washington.edu/\protect \T1\textbraceleft ~\protect \T1\textbraceright dumitriu/JMathPhys\protect \T1\textbraceleft \T1\textbackslash {}_\protect \T1\textbraceright 43\protect \T1\textbraceleft \T1\textbackslash {}_\protect \T1\textbraceright 5830.pdf
https://arxiv.org/abs/0206043
https://doi.org/10.1063/1.1507823
http://proceedings.mlr.press/v84/dupuy18a
https://arxiv.org/abs/1610.05925
http://arxiv.org/abs/1905.12962
https://arxiv.org/abs/1905.12962
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14657/14354
https://arxiv.org/abs/1602.05436
http://proceedings.mlr.press/v70/gautier17a
https://arxiv.org/abs/1705.10498
http://emis.ams.org/journals/ETNA/vol.36.2009-2010/pp1-8.dir/pp1-8.pdf
http://emis.ams.org/journals/ETNA/vol.36.2009-2010/pp1-8.dir/pp1-8.pdf


[Gil14] Jennifer Gillenwater. Approximate inference for determinantal point processes. PhD thesis, University of
Pennsylvania, 2014. URL: https://repository.upenn.edu/edissertations/1285.

[HKPVirag06] J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág. Determinantal Processes
and Independence. In Probability Surveys, volume 3, 206–229. The Institute of Mathematical
Statistics and the Bernoulli Society, 2006. URL: http://arxiv.org/abs/math/0503110, arXiv:0503110,
doi:10.1214/154957806000000078.

[Joh06] Kurt Johansson. Random matrices and determinantal processes. Les Houches Summer School Proceed-
ings, 83(C):1–56, 2006. arXiv:0510038, doi:10.1016/S0924-8099(06)80038-7.

[Kam18] Mohamed Slim Kammoun. Monotonous subsequences and the descent process of invariant random per-
mutations. Electronic Journal of Probability, 2018. URL: https://projecteuclid.org/euclid.ejp/1543287754,
arXiv:1805.05253, doi:10.1214/18-EJP244.

[KDK16] Tarun Kathuria, Amit Deshpande, and Pushmeet Kohli. Batched Gaussian Pro-
cess Bandit Optimization via Determinantal Point Processes. In Neural Informa-
tion Processing Systems (NIPS), 4206–4214. 2016. URL: http://papers.nips.cc/paper/
6452-batched-gaussian-process-bandit-optimization-via-determinantal-point-processes,
arXiv:1611.04088.

[Ker96] Sergei Kerov. A Differential Model Of Growth Of Young Diagrams. Proceedings of St.Petersburg Mathe-
matical Society, 1996. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.7744.

[KN04] Rowan Killip and Irina Nenciu. Matrix models for circular ensembles. International Mathematics Re-
search Notices, 2004(50):2665, 2004. URL: https://academic.oup.com/imrn/article-lookup/doi/10.1155/
S1073792804141597, arXiv:0410034, doi:10.1155/S1073792804141597.

[KT12] Alex Kulesza and Ben Taskar. Determinantal Point Processes for Machine Learning. Founda-
tions and Trends in Machine Learning, 5(2-3):123–286, 2012. URL: http://arxiv.org/abs/1207.6083,
arXiv:1207.6083, doi:10.1561/2200000044.

[Konig04] Wolfgang König. Orthogonal polynomial ensembles in probability theory. Probab. Surveys, 2:385–447,
2004. URL: http://arxiv.org/abs/math/0403090, arXiv:0403090, doi:10.1214/154957805100000177.

[LGD18] Claire Launay, Bruno Galerne, and Agnès Desolneux. Exact Sampling of Determinantal Point Pro-
cesses without Eigendecomposition. ArXiv e-prints, feb 2018. URL: http://arxiv.org/abs/1802.08429,
arXiv:1802.08429.

[LMollerR12] Frédéric Lavancier, Jesper Møller, and Ege Rubak. Determinantal point process models and statisti-
cal inference : Extended version. Journal of the Royal Statistical Society. Series B: Statistical Method-
ology, 77(4):853–877, may 2012. URL: https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12096,
arXiv:1205.4818, doi:10.1111/rssb.12096.

[LJS16a] Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Efficient Sampling for k-Determinantal Point Processes.
In International Conference on Artificial Intelligence and Statistics (AISTATS), 1328–1337. Cadiz, Spain,
2016. URL: http://proceedings.mlr.press/v51/li16f, arXiv:1509.01618.

[LJS16b] Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast DPP Sampling for Nyström with Application to Kernel
Methods. In International Conference on Machine Learning (ICML), 2061–2070. New York, USA, 2016.
URL: http://proceedings.mlr.press/v48/lih16, arXiv:1603.06052.

[LJS16c] Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast Mixing Markov Chains for Strongly
Rayleigh Measures, DPPs, and Constrained Sampling. In Neural Information Process-
ing Systems (NIPS), 4188–4196. Barcelona, Spain, 2016. URL: https://papers.nips.cc/paper/
6182-fast-mixing-markov-chains-for-strongly-rayleigh-measures-dpps-and-constrained-sampling,
arXiv:1608.01008.

[LJS16d] Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast Sampling for Strongly Rayleigh Measures with Ap-
plication to Determinantal Point Processes. ArXiv e-prints, 2016. URL: http://arxiv.org/abs/1607.03559,
arXiv:1607.03559.

Bibliography 109

https://repository.upenn.edu/edissertations/1285
http://arxiv.org/abs/math/0503110
https://arxiv.org/abs/0503110
https://doi.org/10.1214/154957806000000078
https://arxiv.org/abs/0510038
https://doi.org/10.1016/S0924-8099(06)80038-7
https://projecteuclid.org/euclid.ejp/1543287754
https://arxiv.org/abs/1805.05253
https://doi.org/10.1214/18-EJP244
http://papers.nips.cc/paper/6452-batched-gaussian-process-bandit-optimization-via-determinantal-point-processes
http://papers.nips.cc/paper/6452-batched-gaussian-process-bandit-optimization-via-determinantal-point-processes
https://arxiv.org/abs/1611.04088
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.7744
https://academic.oup.com/imrn/article-lookup/doi/10.1155/S1073792804141597
https://academic.oup.com/imrn/article-lookup/doi/10.1155/S1073792804141597
https://arxiv.org/abs/0410034
https://doi.org/10.1155/S1073792804141597
http://arxiv.org/abs/1207.6083
https://arxiv.org/abs/1207.6083
https://doi.org/10.1561/2200000044
http://arxiv.org/abs/math/0403090
https://arxiv.org/abs/0403090
https://doi.org/10.1214/154957805100000177
http://arxiv.org/abs/1802.08429
https://arxiv.org/abs/1802.08429
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12096
https://arxiv.org/abs/1205.4818
https://doi.org/10.1111/rssb.12096
http://proceedings.mlr.press/v51/li16f
https://arxiv.org/abs/1509.01618
http://proceedings.mlr.press/v48/lih16
https://arxiv.org/abs/1603.06052
https://papers.nips.cc/paper/6182-fast-mixing-markov-chains-for-strongly-rayleigh-measures-dpps-and-constrained-sampling
https://papers.nips.cc/paper/6182-fast-mixing-markov-chains-for-strongly-rayleigh-measures-dpps-and-constrained-sampling
https://arxiv.org/abs/1608.01008
http://arxiv.org/abs/1607.03559
https://arxiv.org/abs/1607.03559


[Lyo02] Russell Lyons. Determinantal probability measures. Publications mathématiques de l’IHÉS,
98(1):167–212, apr 2002. URL: http://link.springer.com/10.1007/s10240-003-0016-0, arXiv:0204325,
doi:10.1007/s10240-003-0016-0.

[Mac75] Odile Macchi. The coincidence approach to stochastic point processes. Advances in Applied Probability,
7(01):83–122, 1975. URL: https://www.cambridge.org/core/product/identifier/S0001867800040313/
type/journal\protect\T1\textbraceleft\T1\textbackslash{}_\protect\T1\textbracerightarticle,
doi:10.2307/1425855.

[MCA19] Adrien Mazoyer, Jean-François Coeurjolly, and Pierre-Olivier Amblard. Projections of determinantal
point processes. ArXiv e-prints, 2019. URL: https://arxiv.org/pdf/1901.02099.pdf, arXiv:1901.02099v3.

[Mez06] Francesco Mezzadri. How to generate random matrices from the classical compact groups. Notices of
the American Mathematical Society, 54:592–604, sep 2006. URL: http://arxiv.org/abs/math-ph/0609050,
arXiv:0609050.

[MollerW04] Jesper. Møller and Rasmus Plenge. Waagepetersen. Statistical inference and simulation
for spatial point processes. Volume 23. Chapman & Hall/CRC, 2004. ISBN 1584882654.
URL: https://www.crcpress.com/Statistical-Inference-and-Simulation-for-Spatial-Point-Processes/
Moller-Waagepetersen/p/book/9781584882657, doi:10.1201/9780203496930.

[PB11] Raj K. Pathria and Paul D. Beale. Statistical Mechanics. Academic Press, 2011. ISBN 0123821894. URL:
http://linkinghub.elsevier.com/retrieve/pii/B9780123821881000207, doi:10.1016/B978-0-12-382188-
1.00020-7.

[Pou19] Jack Poulson. High-performance sampling of generic Determinantal Point Processes. ArXiv e-prints, apr
2019. URL: http://arxiv.org/abs/1905.00165, arXiv:1905.00165.

[PW98] James Gary Propp and David Bruce Wilson. How to Get a Perfectly Random Sample from a Generic
Markov Chain and Generate a Random Spanning Tree of a Directed Graph. Journal of Algorithms,
27(2):170–217, may 1998. URL: https://www.sciencedirect.com/science/article/pii/S0196677497909172,
doi:10.1006/JAGM.1997.0917.

[RW06] Carl Edward. Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning. MIT
Press, 2006. ISBN 026218253X. URL: http://www.gaussianprocess.org/gpml/.

[RCCR18] Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and Lorenzo Rosasco. On fast leverage score sam-
pling and optimal learning. In Advances in Neural Information Processing Systems 31, pages 5672–5682.
2018.

[Sos00] Alexander Soshnikov. Determinantal random point fields. Russian Mathematical Surveys, 55(5):923–975,
feb 2000. URL: http://dx.doi.org/10.1070/RM2000v055n05ABEH000321, arXiv:0002099,
doi:10.1070/RM2000v055n05ABEH000321.

[TAB17] Nicolas Tremblay, Pierre-Olivier Amblard, and Simon Barthelme. Graph sampling with determinantal pro-
cesses. In European Signal Processing Conference (EUSIPCO), 1674–1678. IEEE, aug 2017. URL: http:
//ieeexplore.ieee.org/document/8081494/, arXiv:1703.01594, doi:10.23919/EUSIPCO.2017.8081494.

[TBA18] Nicolas Tremblay, Simon Barthelme, and Pierre-Olivier Amblard. Optimized Algorithms to Sam-
ple Determinantal Point Processes. ArXiv e-prints, feb 2018. URL: http://arxiv.org/abs/1802.08471,
arXiv:1802.08471.

[Wig67] Eugene P. Wigner. Random Matrices in Physics. SIAM Review, 9(1):1–23, 1967. doi:10.1137/1009001.

Bibliography 110

http://link.springer.com/10.1007/s10240-003-0016-0
https://arxiv.org/abs/0204325
https://doi.org/10.1007/s10240-003-0016-0
https://www.cambridge.org/core/product/identifier/S0001867800040313/type/journal\protect \T1\textbraceleft \T1\textbackslash {}_\protect \T1\textbraceright article
https://www.cambridge.org/core/product/identifier/S0001867800040313/type/journal\protect \T1\textbraceleft \T1\textbackslash {}_\protect \T1\textbraceright article
https://doi.org/10.2307/1425855
https://arxiv.org/pdf/1901.02099.pdf
https://arxiv.org/abs/1901.02099v3
http://arxiv.org/abs/math-ph/0609050
https://arxiv.org/abs/0609050
https://www.crcpress.com/Statistical-Inference-and-Simulation-for-Spatial-Point-Processes/Moller-Waagepetersen/p/book/9781584882657
https://www.crcpress.com/Statistical-Inference-and-Simulation-for-Spatial-Point-Processes/Moller-Waagepetersen/p/book/9781584882657
https://doi.org/10.1201/9780203496930
http://linkinghub.elsevier.com/retrieve/pii/B9780123821881000207
https://doi.org/10.1016/B978-0-12-382188-1.00020-7
https://doi.org/10.1016/B978-0-12-382188-1.00020-7
http://arxiv.org/abs/1905.00165
https://arxiv.org/abs/1905.00165
https://www.sciencedirect.com/science/article/pii/S0196677497909172
https://doi.org/10.1006/JAGM.1997.0917
http://www.gaussianprocess.org/gpml/
http://dx.doi.org/10.1070/RM2000v055n05ABEH000321
https://arxiv.org/abs/0002099
https://doi.org/10.1070/RM2000v055n05ABEH000321
http://ieeexplore.ieee.org/document/8081494/
http://ieeexplore.ieee.org/document/8081494/
https://arxiv.org/abs/1703.01594
https://doi.org/10.23919/EUSIPCO.2017.8081494
http://arxiv.org/abs/1802.08471
https://arxiv.org/abs/1802.08471
https://doi.org/10.1137/1009001


PYTHON MODULE INDEX

d
dppy.beta_ensembles, 85
dppy.exotic_dpps, 102
dppy.finite_dpps, 36
dppy.multivariate_jacobi_ope, 77

111



INDEX

B
BetaEnsemble (class in dppy.beta_ensembles), 85

C
CarriesProcess (class in dppy.exotic_dpps), 102
CircularEnsemble (class in dppy.beta_ensembles),

86
compute_degrees_1D_polynomials() (in mod-

ule dppy.multivariate_jacobi_ope), 83
compute_K() (dppy.finite_dpps.FiniteDPP method),

37
compute_kernel() (dppy.exotic_dpps.UST method),

103
compute_kernel_eig_vecs()

(dppy.exotic_dpps.UST method), 104
compute_L() (dppy.finite_dpps.FiniteDPP method),

37
compute_norms_1D_polynomials() (in module

dppy.multivariate_jacobi_ope), 83
compute_ordering() (in module

dppy.multivariate_jacobi_ope), 83
compute_rejection_bounds() (in module

dppy.multivariate_jacobi_ope), 84

D
DescentProcess (class in dppy.exotic_dpps), 102
dppy.beta_ensembles

module, 85
dppy.exotic_dpps

module, 102
dppy.finite_dpps

module, 36
dppy.multivariate_jacobi_ope

module, 77

E
eval_multiD_polynomials()

(dppy.multivariate_jacobi_ope.MultivariateJacobiOPE
method), 81

eval_w() (dppy.multivariate_jacobi_ope.MultivariateJacobiOPE
method), 81

F
FiniteDPP (class in dppy.finite_dpps), 36
flush_samples() (dppy.beta_ensembles.BetaEnsemble

method), 85
flush_samples() (dppy.beta_ensembles.CircularEnsemble

method), 86
flush_samples() (dppy.beta_ensembles.GinibreEnsemble

method), 87
flush_samples() (dppy.beta_ensembles.HermiteEnsemble

method), 88
flush_samples() (dppy.beta_ensembles.JacobiEnsemble

method), 91
flush_samples() (dppy.beta_ensembles.LaguerreEnsemble

method), 93
flush_samples() (dppy.exotic_dpps.CarriesProcess

method), 102
flush_samples() (dppy.exotic_dpps.DescentProcess

method), 102
flush_samples() (dppy.exotic_dpps.UST method),

104
flush_samples() (dppy.exotic_dpps.VirtualDescentProcess

method), 105
flush_samples() (dppy.finite_dpps.FiniteDPP

method), 37

G
GinibreEnsemble (class in dppy.beta_ensembles), 87

H
HermiteEnsemble (class in dppy.beta_ensembles), 88
hist() (dppy.beta_ensembles.BetaEnsemble method),

85
hist() (dppy.beta_ensembles.CircularEnsemble

method), 86
hist() (dppy.beta_ensembles.GinibreEnsemble

method), 87
hist() (dppy.beta_ensembles.HermiteEnsemble

method), 88
hist() (dppy.beta_ensembles.JacobiEnsemble

method), 91
hist() (dppy.beta_ensembles.LaguerreEnsemble

method), 93

112



I
info() (dppy.finite_dpps.FiniteDPP method), 37

J
JacobiEnsemble (class in dppy.beta_ensembles), 90

K
K() (dppy.multivariate_jacobi_ope.MultivariateJacobiOPE

method), 80

L
LaguerreEnsemble (class in dppy.beta_ensembles),

93

M
module

dppy.beta_ensembles, 85
dppy.exotic_dpps, 102
dppy.finite_dpps, 36
dppy.multivariate_jacobi_ope, 77

MultivariateJacobiOPE (class in
dppy.multivariate_jacobi_ope), 79

N
normalize_points()

(dppy.beta_ensembles.BetaEnsemble method),
85

normalize_points()
(dppy.beta_ensembles.CircularEnsemble
method), 86

normalize_points()
(dppy.beta_ensembles.GinibreEnsemble
method), 87

normalize_points()
(dppy.beta_ensembles.HermiteEnsemble
method), 89

normalize_points()
(dppy.beta_ensembles.JacobiEnsemble
method), 91

normalize_points()
(dppy.beta_ensembles.LaguerreEnsemble
method), 93

P
plot() (dppy.beta_ensembles.BetaEnsemble method),

85
plot() (dppy.beta_ensembles.CircularEnsemble

method), 86
plot() (dppy.beta_ensembles.GinibreEnsemble

method), 88
plot() (dppy.beta_ensembles.HermiteEnsemble

method), 89

plot() (dppy.beta_ensembles.JacobiEnsemble
method), 91

plot() (dppy.beta_ensembles.LaguerreEnsemble
method), 94

plot() (dppy.exotic_dpps.CarriesProcess method), 102
plot() (dppy.exotic_dpps.DescentProcess method),

102
plot() (dppy.exotic_dpps.PoissonizedPlancherel

method), 103
plot() (dppy.exotic_dpps.UST method), 104
plot() (dppy.exotic_dpps.VirtualDescentProcess

method), 105
plot_diagram() (dppy.exotic_dpps.PoissonizedPlancherel

method), 103
plot_graph() (dppy.exotic_dpps.UST method), 104
plot_kernel() (dppy.exotic_dpps.UST method), 104
plot_kernel() (dppy.finite_dpps.FiniteDPP

method), 37
PoissonizedPlancherel (class in

dppy.exotic_dpps), 103

S
sample() (dppy.exotic_dpps.CarriesProcess method),

102
sample() (dppy.exotic_dpps.DescentProcess method),

102
sample() (dppy.exotic_dpps.PoissonizedPlancherel

method), 103
sample() (dppy.exotic_dpps.UST method), 104
sample() (dppy.exotic_dpps.VirtualDescentProcess

method), 105
sample() (dppy.multivariate_jacobi_ope.MultivariateJacobiOPE

method), 81
sample_banded_model()

(dppy.beta_ensembles.BetaEnsemble method),
86

sample_banded_model()
(dppy.beta_ensembles.CircularEnsemble
method), 86

sample_banded_model()
(dppy.beta_ensembles.GinibreEnsemble
method), 88

sample_banded_model()
(dppy.beta_ensembles.HermiteEnsemble
method), 90

sample_banded_model()
(dppy.beta_ensembles.JacobiEnsemble
method), 91

sample_banded_model()
(dppy.beta_ensembles.LaguerreEnsemble
method), 94

sample_chain_rule_proposal()
(dppy.multivariate_jacobi_ope.MultivariateJacobiOPE
method), 82

Index 113



sample_exact() (dppy.finite_dpps.FiniteDPP
method), 37

sample_exact_k_dpp()
(dppy.finite_dpps.FiniteDPP method), 39

sample_full_model()
(dppy.beta_ensembles.BetaEnsemble method),
86

sample_full_model()
(dppy.beta_ensembles.CircularEnsemble
method), 87

sample_full_model()
(dppy.beta_ensembles.GinibreEnsemble
method), 88

sample_full_model()
(dppy.beta_ensembles.HermiteEnsemble
method), 90

sample_full_model()
(dppy.beta_ensembles.JacobiEnsemble
method), 92

sample_full_model()
(dppy.beta_ensembles.LaguerreEnsemble
method), 95

sample_mcmc() (dppy.finite_dpps.FiniteDPP
method), 40

sample_mcmc_k_dpp()
(dppy.finite_dpps.FiniteDPP method), 41

U
UST (class in dppy.exotic_dpps), 103

V
VirtualDescentProcess (class in

dppy.exotic_dpps), 105

Index 114


	Installation instructions
	How to cite this work?
	Documentation contents
	Finite DPPs
	Definition
	Properties
	Exact sampling
	MCMC sampling
	Approximate sampling
	API

	Continuous DPPs
	Definition
	Properties
	Sampling
	-Ensembles
	Multivariate Jacobi ensemble
	API

	Exotic DPPs
	Uniform Spanning Trees
	Stationary 1-dependent process
	Poissonized Plancherel measure
	API

	Bibliography


